

Alpha Radiation Impacts on Chromatographic Separations

Andrew Knight, Maddy Eddy, Dan McAlister,

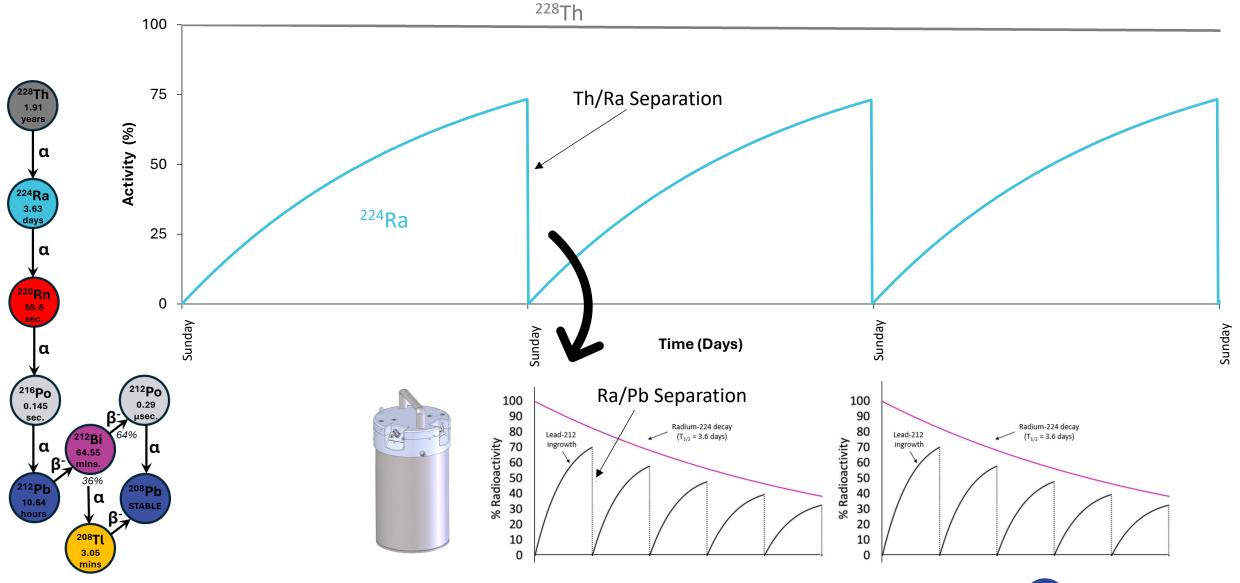
Edwin Sagastume, Keith Roach

RRMC 2025

Eichrom Users Group Meeting

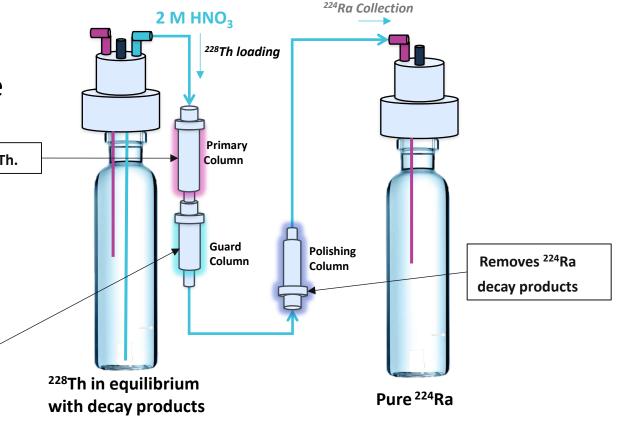
Perspective Therapeutics Isotope Generator

VMT-α-GEN


- Perspective Therapeutics has a proprietary ²¹²Pb isotope generator (patent pending) for the development of ²¹²Pb-bearing radiopharmaceuticals for targeted alpha therapies to treat various types of cancer
- The generator contains up to 35 mCi (~1.3 GBq) of ²²⁴Ra bound to a substrate and allows for routine production of ²¹²Pb via radioactive ingrowth
- ²²⁴Ra is purified from a ²²⁸Th source on a routine basis to provide on demand ²²⁴Ra/²¹²Pb generators for drug product manufacturing

VMT-α-GEN

Utilizing the Th-228 Decay Chain

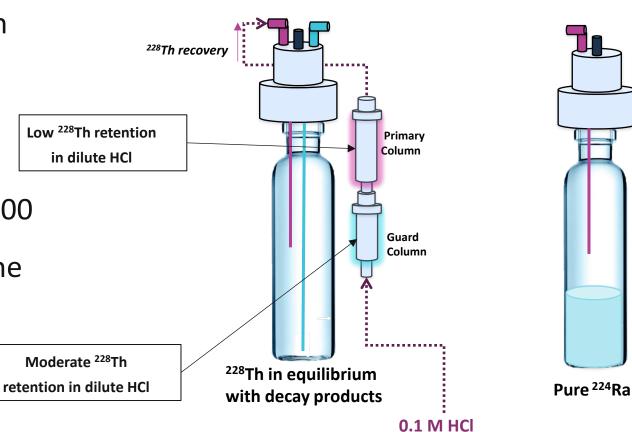


Radium-224 Purification

Process purifies ²²⁴Ra from ²²⁸Th and subsequently recycles the ²²⁸Th for future use.

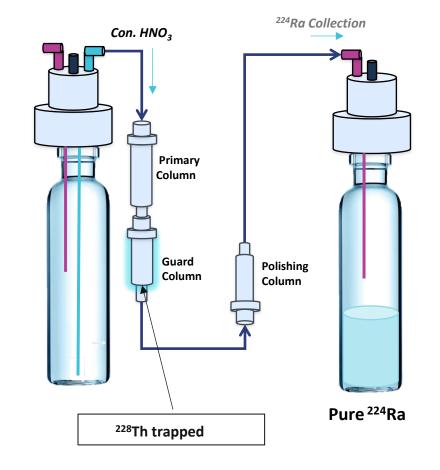
This process has been performed > 200 times to supply generators all over the world.

²²⁸Th scavenger

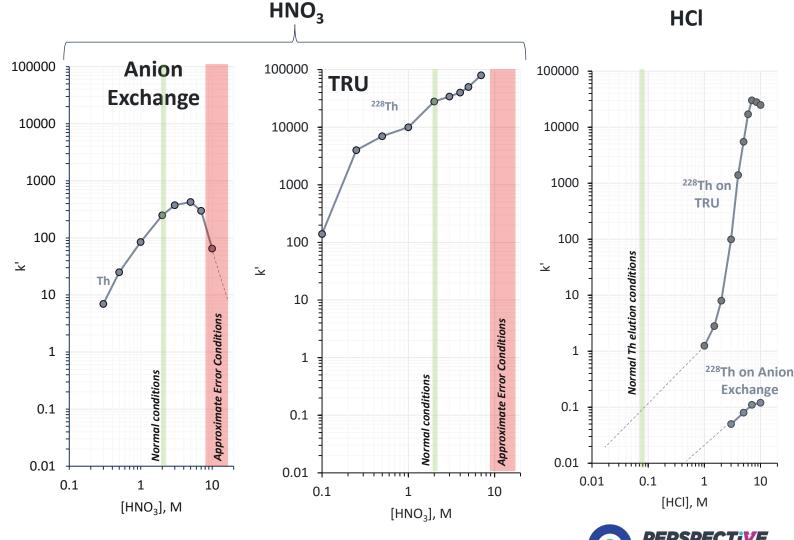


Radium-224 Purification

Patented process to purify ²²⁴Ra from ²²⁸Th and subsequently recycle the ²²⁸Th for future use.


 This process has been performed > 200 times to supply generators all over the world

Manufacturing Error


- One time, following loaded Th/Ra with ~12 mL of 2 M
 HNO₃ instead of rinsing the system with 3 mL of 2 M
 HNO₃, it was rinsed with 1.5 mL of concentrated HNO₃....
- Likely all the Th passed through the primary column and remained adsorbed onto the guard column
- Purified ²²⁴Ra acid concentration needed to be adjusted prior to loading onto the generator
 - This was successful and the generator pass all QC checks.
- But how do we get Th off and back into a useful form?

How will Th Behave?

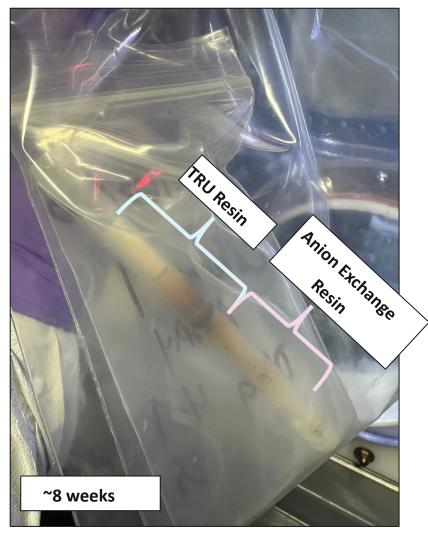
- Usually, ²²⁸Th primarily resides on the anion exchange column and can be recovered in ~10 mL of
 <0.1 M HCl
- Under the approximate conditions
 of the error, it is expected that
 ²²⁸Th pass through the anion
 exchange column and remain
 tightly associated with TRU.

Initial Attempt to Recover Th

- TRU and the anion exchange column were rinsed with 1.5 mL of water to try to displace and dilute some of the nitric acid
- Then 10 mL of 0.1 M HCl were added to try to recover ²²⁸Th
- Each fraction and the column were set aside for ~3 weeks to wait for in-growth and then were analyzed with a dose calibrator

Fraction	Activity (mCi)	% Activity
1.5 mL water Rinse	0.10	0.3%
10 mL 0.1 M HCl Rinse	1.6	5.5%
Chromatographic Resins	26.8	94.2%
Total	28.5	100%

Needed to develop a more aggressive ²²⁸Th recovery strategy

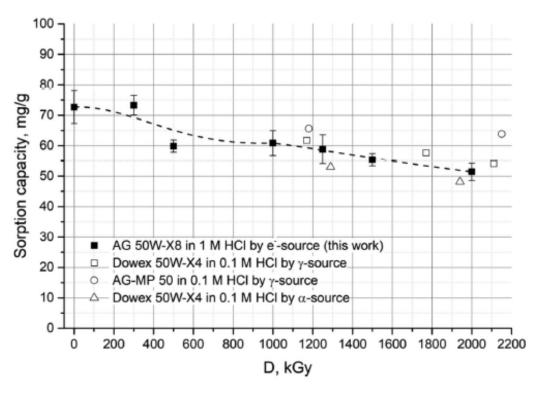

A Unique Opportunity

- 1. Under normal conditions 0.5 3% of 228 Th is lost during the separation and remains associated with the resin, therefore we have had a desire to explore enhanced recovery options
 - In scaled-up activities 0.5% 3 % of Th-228 corresponds to a significant amount of money lost on the column
 - Work with Dan/Maddy at Eichrom to develop a more aggressive recovery method for Thorium.
- 2. With scale-up effort and eventual commercialization, we have a deep interest in how increased radiation will impact separations
 - Very challenging to test systematically with alpha particle emitters and limited data exists.

In the meantime...

~28 mCi (~1.0 GBq) of ²²⁸Th remains on TRU Resin

- Very few studies exist evaluating resin performance versus alpha particle degradation
- Very few studies exist evaluating TRU resin and the impact of radiation on its behavior
- The amount of radioactivity, the type of radioactivity, and the resin type have led us to an unknown situation


Limitations:

- Eichrom has the capability to burn or chemically destroy the resin and recover the Th, but the activity is far too high
- Manufacturing sites can handle the radioactivity, but limited in the strategies to recover ²²⁸Th

The Effects of Resin Degradation May Be Agnostic to Type of Radiation

- The type, the dose rate, nature of the media surrounding the resins, and other factors play a role in how resins degrade and the extent of the degradation ^{1,2}
- However, recent studies have shown that exposure of similar doses from different sources results in similar sorption behavior^{1,2}
 - Alpha particles would likely cause more localize, direct damage²

Figure 3. Sorption capacity of AG 50 W–X8 for yttrium as a function of absorbed dose under static conditions. m (AG 50 W–X8) = 0.05 g, V (1 M HCl) = 2 mL, shaking time = 24 h. Literature data recalculated for yttrium (no correction for weight changing): Dowex 50 W–X4 in 0.1 M HCl irradiated by external gamma–source^[41]; AG–MP 50 in 0.1 M HCl irradiated by external gamma–source^[40]; Dowex 50 W–X4 in 0.1 M HCl irradiated by internal alpha–source.^[42]

Estimate How Much Radiation

Case study with 100 mCi of ²²⁵Ac

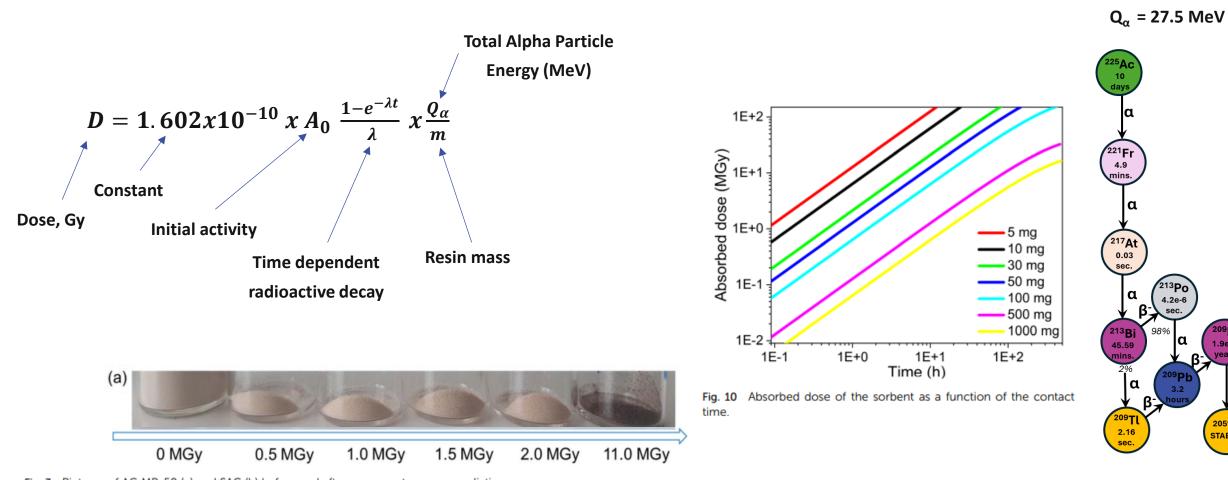
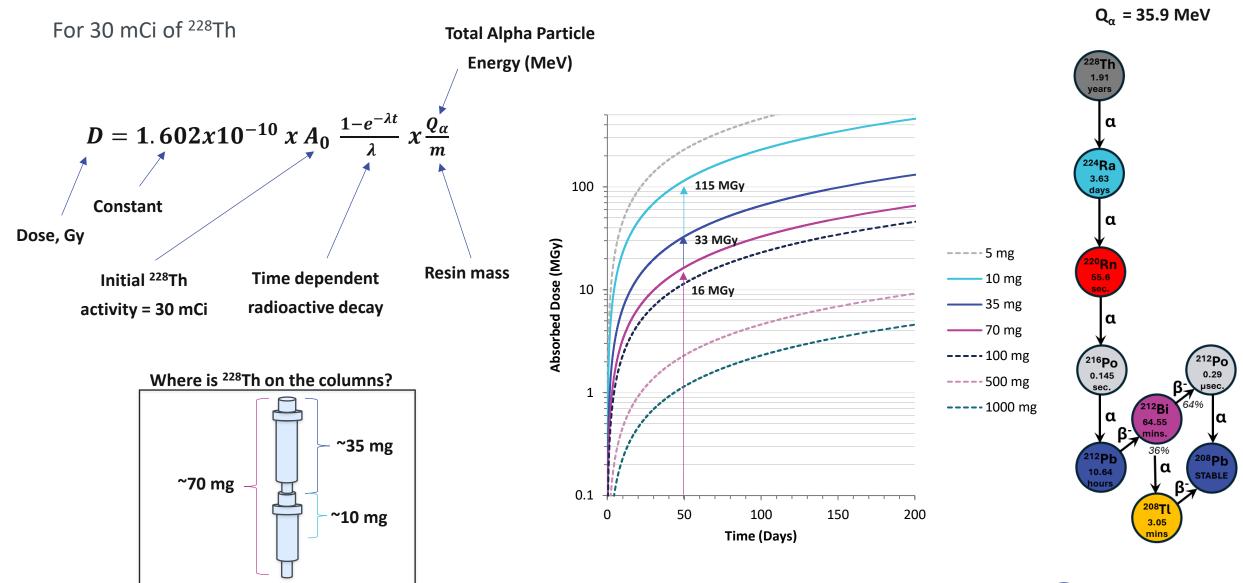



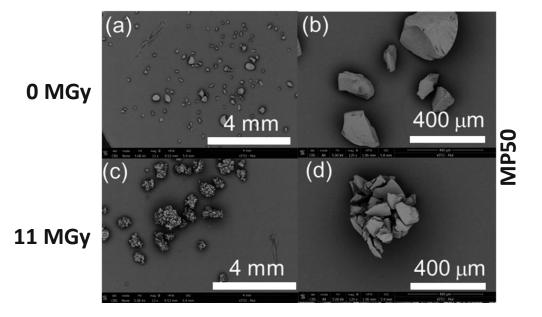
Fig. 3 Pictures of AG MP-50 (a) and SAC (b) before and after exposure to gamma radiation.

Estimate How Much Radiation

Some Radionuclides used in Nuclear Medicine

How do the estimated Q values compare?

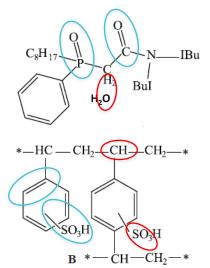
Radionuclide	Half-life	Estimated Q (MeV)*	Use in Nuclear Medicine
²²⁸ Th	1.91 Years	35.9	Precursor or parent in an isotope generator
²²⁵ Ac	9.91 Days	27.5	Isotope for Therapy
²²⁴ Ra	3.63 Days	29.6	Parent in Isotope Generator
²²³ Ra	11.43 Days	26.0	Isotope for Therapy
²¹¹ At	7.22 Hours	9.77	Isotope for Therapy
²¹² Pb	10.63 Hours	10.9	Isotope for Therapy
²¹³ Bi	45.61 Mins	8.4	Isotope for Therapy
²¹² Bi	60.55 Mins	10.9	Isotope for Therapy
¹⁷⁷ Lu	6.65 Days	0.4	Isotope for Therapy
131	8.02 Days	0.6	Isotope for Therapy
⁶⁸ Ge	271.04 Days	1.7	Parent in Isotope Generator

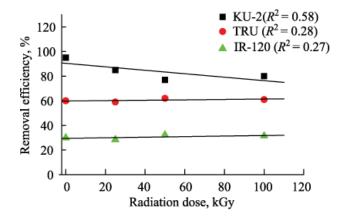

^{*} Calculated in equilibrium with decay products. Primarily accounting for major emissions

What Happens to Resins when Exposed to High Amounts of Radioactivity?

Particle Aggregation and Clogging

- A DOE ²²⁴Ra generator loaded with ~27 mCi on MP50 had a 3-week travel delay
 - Upon Receipt, it was eluted 1 time to retrieve 0.5 mCi of ²¹²Pb. Subsequent elution attempts were unsuccessful as the column became clogged.

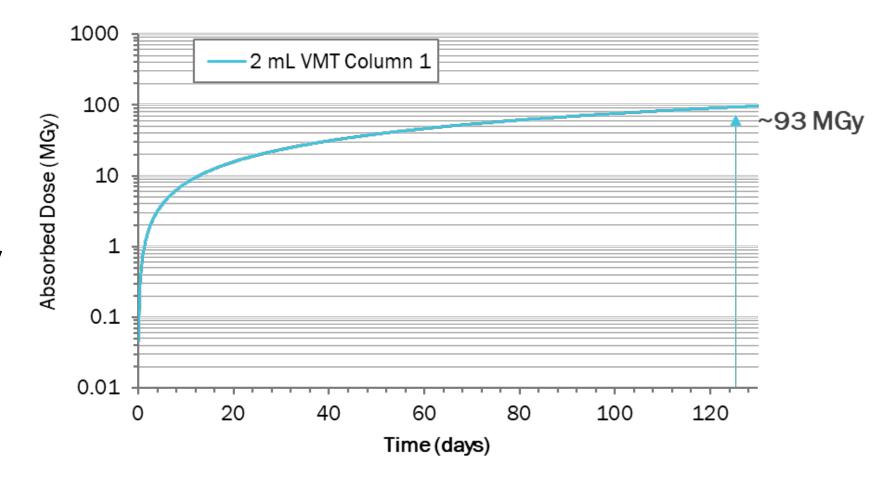



Chemical Changes

Radiolytic degradation can cause decomposition and scission of functional groups, modification to the degree of cross linking, and possible resins interactions with degradation products. Which *may* lead to changes in resin behavior.

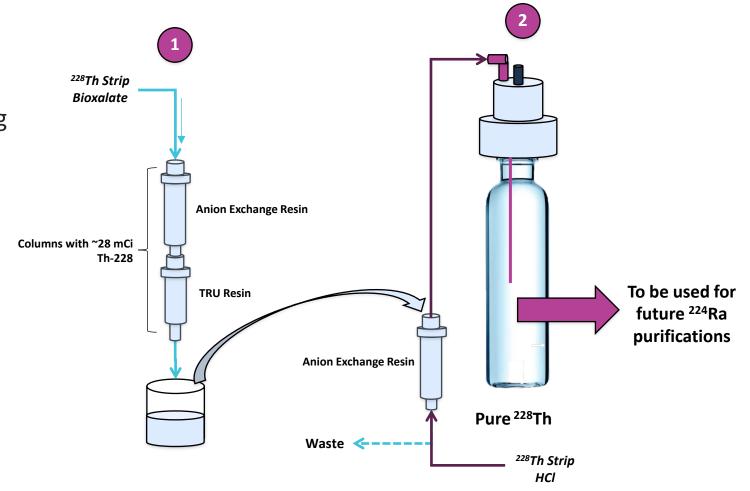
Dose, kGy	KU	KU-2 and Amberlite® IR-120 resins			TRU resin		
Dose, koy	SO ₂ OH ^a	S=O ^a	C–H ^b	C=Cc	H-OH ^d	P=O ^e	C=Of
	before irradiation						
0.0	3430	1123	2921	1630	3428	1149	1736
after irradiation							
25	3429	1126	2925	1631	3430	1149	1735
50	3428	1124	2925	1628	3427	1146	1733
100	3428	1125	2926	1626	3428	1144	1732

a Sulfonic group, b alkane, c alkene, d lattice water, e phosphine oxide, and f carbonyl



The clock is ticking...

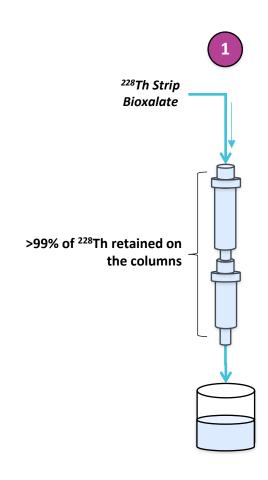
- After ~126 days, the
 recovery plan was finalized
 to retrieve the ²²⁸Th that
 was stuck on the column
- Estimate > 93 MGy seen by the resin.



Th-228 Recovery Plan

• Goals:

- Strip ²²⁸Th from TRU Resin using a mild chelator
- 2. Adsorb recovered ²²⁸Th onto another column to return the ²²⁸Th to a form consistent with existing ²²⁸Th source for future ²²⁴Ra purification



Recovery Attempt

- The strip with bioxalate did not work as 99% of the radioactivity remained adsorbed to the columns
 - Checked by dose calibrator after sufficient decay product ingrowth.

Fraction	Activity (mCi)	% Activity
Aliquot from Bioxalate Strip	n.d.	0%
Effluent from Second Anion Exchange Resin	n.d.	0%
Initial Chromatographic Resins	25.6	>99%
Total	25.6	99%

Other Possible Confounding Variables

- Mass Effects
 - The ²²⁸Th mass is about 35 ug and Th is prone to precipitation with bioxalate.
 - Eichrom evaluated this with ²³²Th and 35 ug is not sufficient mass to prevent elution due to precipitation
- Kinetic Effects
 - Since ²²⁸Th was adsorbed onto the resin for several months, maybe it formed a very stable thermodynamic product
 - Eichrom evaluated this, on a limited time-scale over the course of several days, and saw no impact of time on Th elution
- Solvent/Media Effects
 - The method was developed using a resin preconditioned with 0.1 M ammonium bioxalate, the real situation was last eluted with 0.1 M HCl
 - Eichrom evaluated the impact of 0.1 M HCl on the bioxalate strip and did not impact the Th elution

Radiation effects are likely the sole culprit that led to the inability to recover Th

Next Steps

- Burn the resin to recover the ²²⁸Th
 - This will likely work, however it is not something that can be done at the manufacturing facility and likely not at the commercial facility
 - Would ideally have an aqueous-based separation to recover residual ²²⁸Th.
- Send off the material for Academic studies to evaluate what the extractant components in TRU resin look like

Conclusions

What We Learned

- Worked to develop an effective method to recover ²²⁸Th from a TRU resin (when not damaged by radiation).
 - Could be implemented during initial separation and improve Th recoveries.
- ~100 MGy causes too much radiation damage and leads to possibly irreversible adsorption of ²²⁸Th
 - Suggests a limit exists to the use of generator technologies due to the impacts of radiation

What Still Needs to Be Addressed

- What is the relationship between the extent of radiation damage on TRU resin and the ²²⁸Th adsorption behavior?
 - Starting to be evaluated
 - What species form in-situ that led to the formation of a stable Th-extractant
- How much radiation can TRU resin (and other separation resins) endure before unanticipated analyte behavior occurs?
- Does radiation damage behavior depend on the type of radiation?

Questions

