

A BRAND OF EICHROM TECHNOLOGIES

Resolve[®] Filters

Madeleine Eddy, PhD. 65th RRMC, Atlanta GA 1 November 2022

Outline

1. New Filter Material

- Identification of alternative membrane
- Analysis of new material performance
- 2. Review of RE Precipitate Method
 - Identification of key parameters for sample prep
 - Recommendations for sample drying
- 3. Conclusions and Future Work

Outline

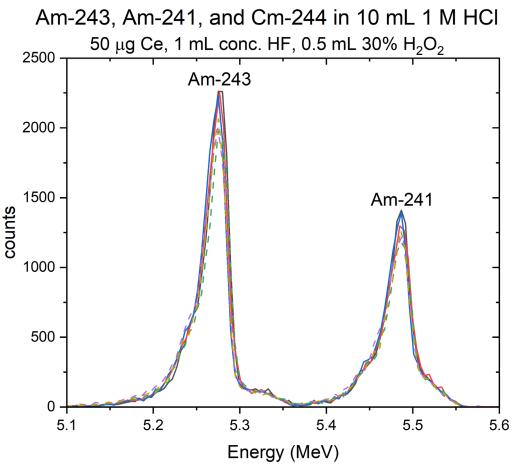
1. New Filter Material

- Identification of alternative membrane
- Analysis of new material performance
- 2. Review of RE Precipitate Method
 - Identification of key parameters for sample prep
 - Recommendations for sample drying
- 3. Conclusions and Future Work

Identifying an Alternative Material

Criteria:

- Physically similar to polypropylene
- Uniform material quality
- Consistent Supply
- Maintain high spectral resolution
- Compatible with existing methods



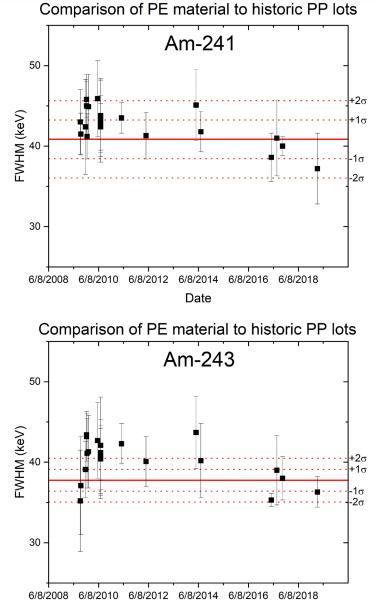
Phase One

- Identified nine different materials/sources of interest
- Performed standard QC procedure to determine if the materials work with our methods
- Used QC test to identify physical differences between lots

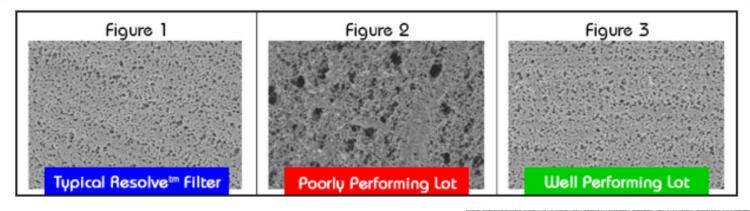
eichrom

Phase One Results

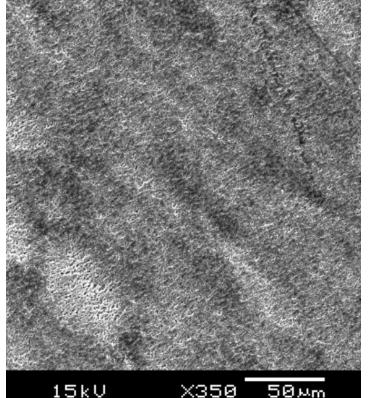
Material	Pore Size (µm)	Am-241 FWHM	Am-243 FWHM	Both Sides?	Curling?
Current PP	0.1	38.6	35.3	Yes	No
PES	0.1	40.2	37.6	Yes	Severe
PES	0.1	40.8	36.4	Yes	Severe
РР	0.22	non-resolution	non-resolution	-	-
РР	0.45	non-resolution	non-resolution	-	-
PES	0.1	36.6	40.1	Yes	Yes
PP w/PTFE laminated top	0.1	poor recoveries and spotty resolution	poor recoveries and spotty resolution	-	-
РР	0.1	clogged filter	clogged filter	-	-
PE	0.1	40	38	Yes	Minor
PE	0.2	45	42	Yes	Minor


Phase Two

- Purchase full lot of top candidate from Phase One
- Sample all over membrane roll to determine uniformity


eichrom

www.eichrom.com

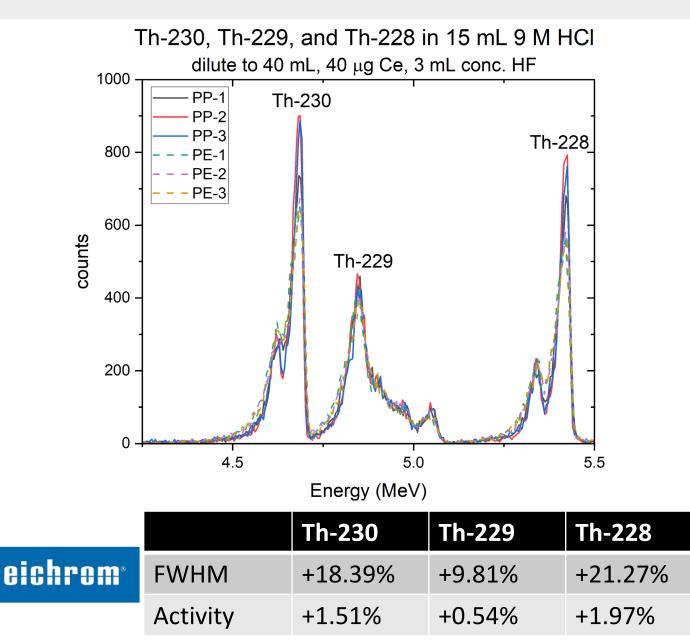

7

Phase Three - SEM

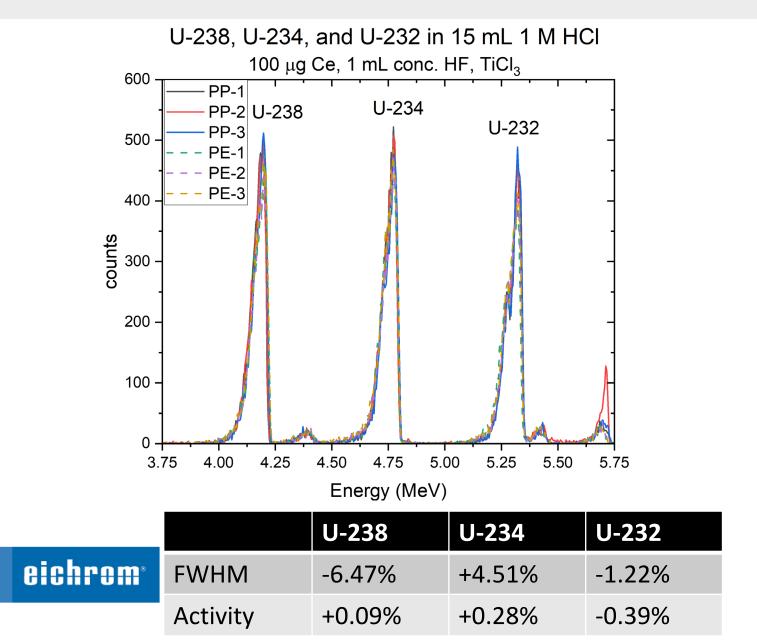
- Alpha sources prone to selfattenuation
- Smooth, even precipitate required for high quality spectra
- Defects in filter surface would lead to poor resolution

eichrom

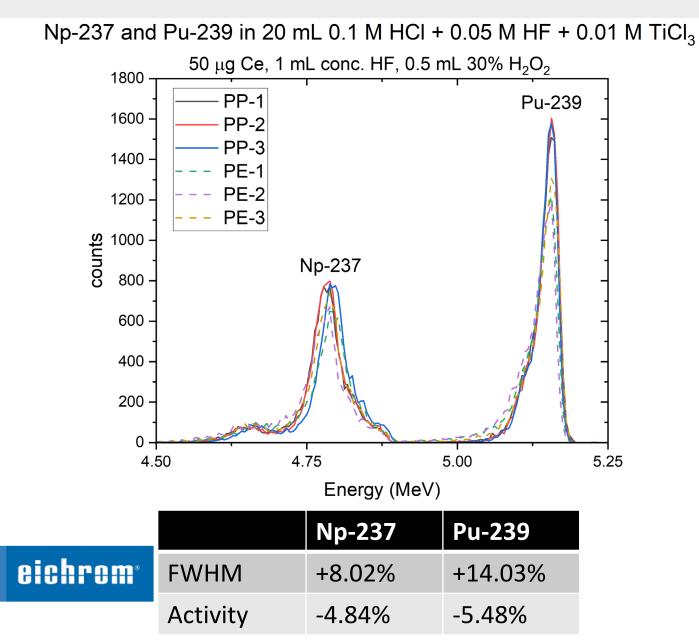
Phase Three – PP vs. PE Testing

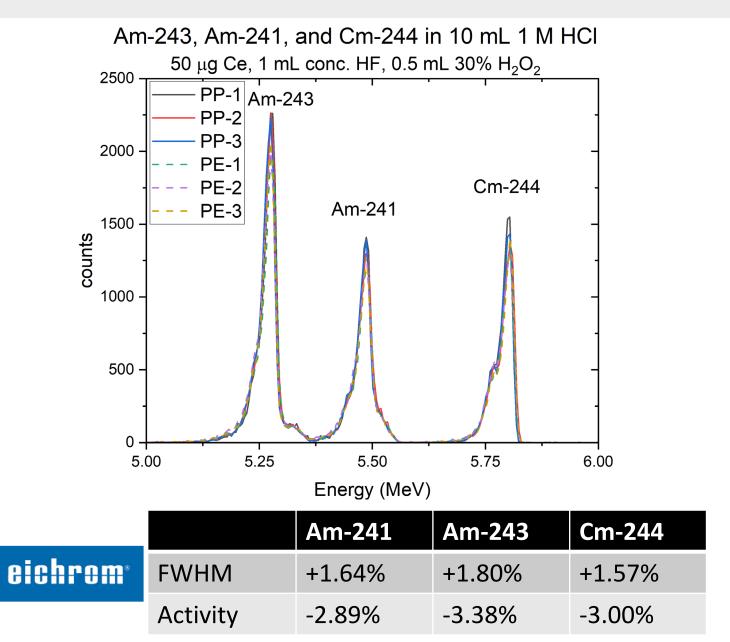

Element	Elution Solution	µg Ln carrier	mL conc. HF	Redox Agent*
Th	15 mL 9 M HCl Dilute to 40 mL	40	3	N/A
U	15 mL 1 M HCl	100	1	TiCl ₃
Np/Pu	20 mL 0.1 M HCl + 0.05 M HF + 0.01 M TiCl ₃	50	1	0.5 mL 30% H ₂ O ₂
Am/Cm	10 mL 1.0 M HCl	50	1	0.5 mL 30% H ₂ O ₂

www.eichrom.com


eichrom

*Redox Agents used because method only applies to +3/+4 actinides


Standard Th Sample


Standard U Sample

Standard Pu/Np Sample

Standard Am/Cm Sample

Polyethylene Material

- Material looks and feels similar to polypropylene
- Uniform performance
- Stand To avoid curling we recommend:
 FWH data 1)Rinse filters with 100% Ethanol
- Com earth
 2)Mount Filters on planchettes
 before drying
- conditions the filter may curl up when dried

Outline

1. New Filter Material

- Identification of alternative membrane
- Analysis of new material performance

2. Review of RE Precipitate Method

- Identification of key parameters for sample prep
- Recommendations for sample drying
- 3. Conclusions and Future Work

General Procedure

- 1. Prepare sample microprecipitate
 - Add Ln carrier
 - Add conc. HF
 - Add oxidizing or reducing agent (if necessary)
 - Mix and wait 30 min for precipitate to fully form
- 2. Wet Resolve[®] Filters with 80% Ethanol
- 3. Wet Resolve[®] Filters water
- 4. Add samples to filter/funnel
- 5. Rinse filter/funnel with water
- 6. Finish Resolve[®] Filters with 100% ethanol
- 7. Mount Filters on planchettes with adhesive/glue
- 8. Dry under heat lamp

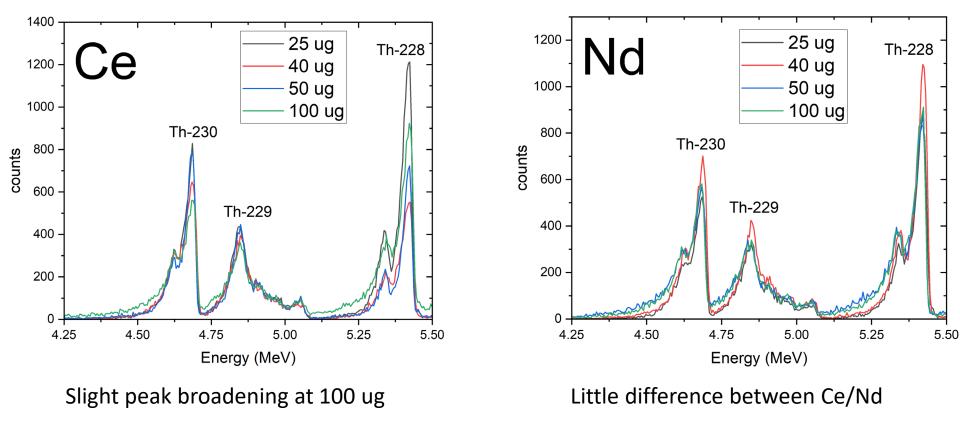
eichrom

Eichrom Application Note AN-1805, Alpha Spectrometry Source Preparation: www.eichrom.com Rare Earth Fluoride Microprecipitation

General Procedure

- **1.** Prepare sample microprecipitate
 - Add Ln carrier
 - Add conc. HF
 - Add oxidizing or reducing agent (if necessary)
 - Mix and wait 30 min for precipitate to fully form

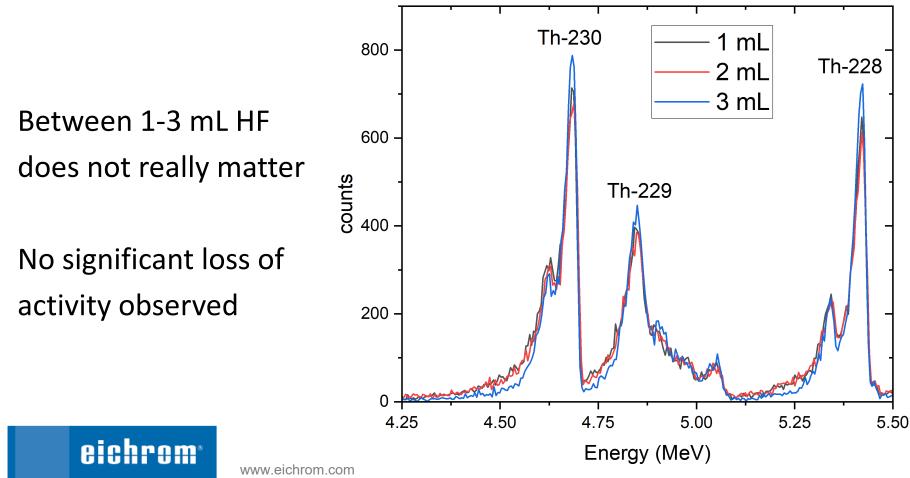
Element	Elution Solution	µg Ln carrier	mL conc. HF	Redox Agent*
Th	15 mL 9 M HCl Dilute to 40 mL	40	3	N/A
U	15 mL 1 M HCl	100	1	TiCl ₃
Np/Pu	20 mL 0.1 M HCl + 0.05 M HF + 0.01 M TiCl ₃	50	1	0.5 mL 30% H ₂ O ₂
Am/Cm	10 mL 1.0 M HCl	50	1	0.5 mL 30% H ₂ O ₂

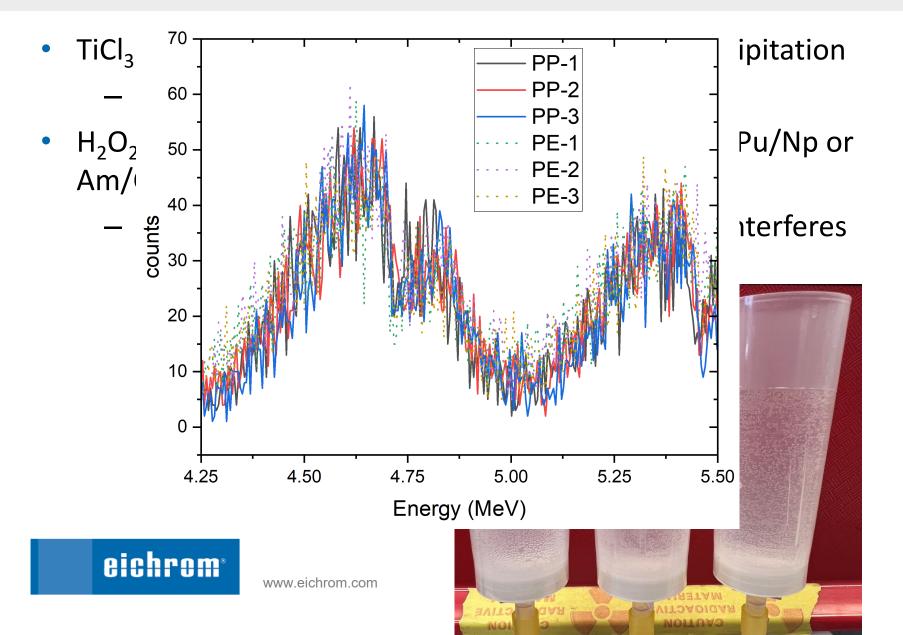


www.eichrom.com

*Redox Agents used because method only applies to +3/+4 actinides

Sample Prep – Ln Carrier


For Th samples in 9 M HCl the standard procedure is to add **40 μg** rare earth carrier to form the precipitate. But...


Sample Prep - HF

For Th samples in 9 M HCl the standard procedure is to add

3 mL conc HF to form the precipitate. But...

Sample Prep – Redox Agent

Genera'

cedure

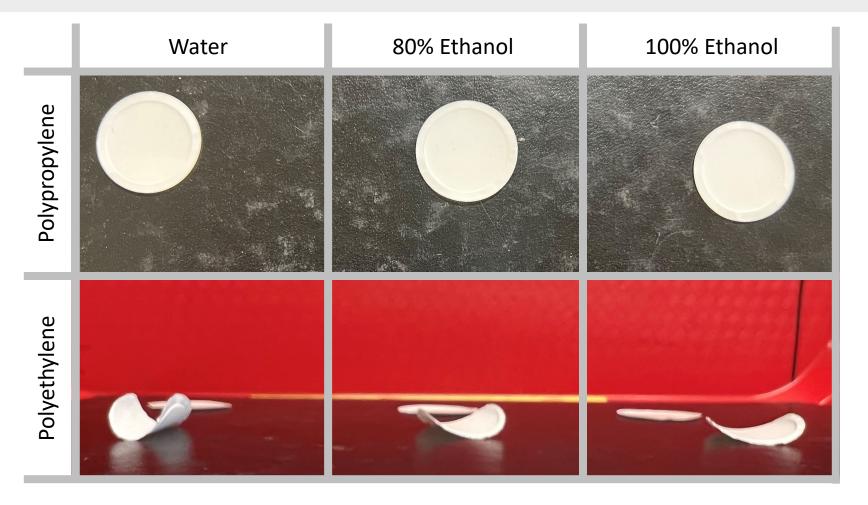
Precondition with 80% ethanol

prior to use. See Eichrom Method SPA01.

- 1. Prepare sample micropr
 - Add Ln carrier
 - Add conc. HF
 - Add oxidizin
 - Mix and
- 2. Wet '
- 3. W
- 4. Adu
- 5. Rinse th
- 6. Finish Reso
- 7. Mount Filters
- 8. Dry under heat la.

General Procedure

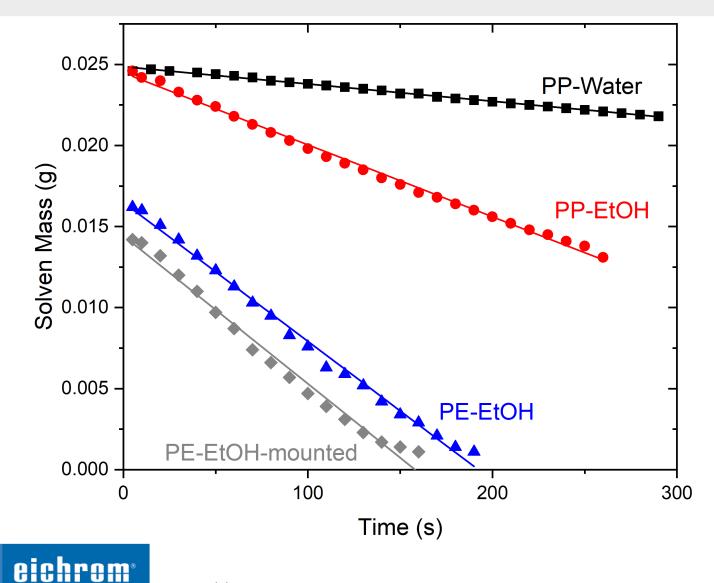
- 1. Prepare sample microprecipitate
 - Add Ln carrier
 - Add conc. HF
 - Add oxidizing or reducing agent (if necessary)
 - Mix and wait 30 min for precipitate to fully form
- 2. Wet Resolve[®] Filters with 80% Ethanol
- **3.** Wet Resolve[®] Filters water
- **4.** Add samples to filter/funnel
- **5.** Rinse filter/funnel with water
- 6. Finish Resolve[®] Filters with 100% ethanol
- 7. Mount Filters on planchettes with adhesive/glue
- 8. Dry under heat lamp



General Procedure

- 1. Prepare sample microprecipitate
 - Add Ln carrier
 - Add conc. HF
 - Add oxidizing or reducing agent (if necessary)
 - Mix and wait 30 min for precipitate to fully form
- 2. Wet Resolve[®] Filters with 80% Ethanol
- 3. Wet Resolve[®] Filters water
- 4. Add samples to filter/funnel
- 5. Rinse filter/funnel with water
- 6. Finish Resolve[®] Filters with 100% ethanol
- 7. Mount Filters on planchettes with adhesive/glue
- 8. Dry under heat lamp

Finishing with 100% Ethanol



Wet vs. Dry Filter Mounting

Filter Drying Time

Conclusions

1. New Filter Material

- Polyethylene is a viable replacement for Resolve[®] Filters
- PE performance is equivalent to PP for standard actinide precipitate conditions
- PE does experience slight curling

2. Review of RE Precipitate Method

- Precipitate quality is unaffected by different amounts of rare earth (25-200 ug) or HF (1-3 mL) added
- Peroxide is detrimental to high HCI samples
- Finishing with 100% ethanol reduces filter curling
- Finishing/mounting/drying has little impact on spectra quality but does impact handling

Future Work

Preventing filter curling

 More in-depth study of drying time for different solvent finishing conditions

HF alternatives

- Hydroxide methods
 - Actinide samples under common elution conditions
 - More in-depth testing of complexant interferences
- Other F⁻ sources
 - Validate conditions using NH₄F and NH₄FHF instead of HF for common actinide samples

Eichrom Application Note AN-1807, Alpha Spectrometry Source Preparation: www.eichrom.com Cerium Hydroxide Microprecipitation

Questions?

For Eichrom Application Notes please visit: https://www.eichrom.com/eichrom/applications-notes/ AN-1805 for Rare Earth Fluoride Method AN-1807 for Cerium Hydroxide Method

For Alpha Spectrometry Training please visit: <u>https://www.ortec-online.com/service-and-</u> <u>support/training/alpha-spectrometry</u>

