

A BRAND OF EICHROM TECHNOLOGIES

Fundamentals of metal ion separations: Nuclear Medicine Examples

Daniel McAlister, Ph.D. 30 April 2021

Outline

- ⁹⁰Sr/⁹⁰Y and ⁸²Sr (PPT vs IX vs EXC, extractant bleed)
- ²²⁵Ac/²¹³Bi (Standard COW vs MSIG)
- ²²⁵Ac production (Targeting minor component)
- ¹⁷⁷Lu/¹⁶¹Tb (Low separation factors)
- ⁶⁸Ga (Inorganic adsorbants and bonded silicas)
- ²²⁷Ac from stainless steel encapsulated neutron sources
 - Unique selectivity and synergistic enhancement of extraction

Eichrom Website – Nuclear Medicine

Eichrom Website – Nuclear Medicine

←	\rightarrow	C	(eichrom.com/eicl	hrom/products/nuclear-medicine/a	applications/	☆	ΞJ	
	Apps	Æ	Login	ADP Workfo 📈	Nudat 2 Log In < Eichrom Te	🔶 Daniel McAlister 📀 IBILABS.com Inter 📀 Login KLNHB 🕩 TRI-CARB 4910TR 1 📥 Eckert & Zieg	gler St	:r	;
		BRAND OF	NOLOGIES	PRODUCTS	TECHNICAL INFO RESOURCES	+1 (630) 963-0320	CON	TACT	
					For more than 25 yea	ars, Eichrom scientists and partners have developed chromatographic			
					separations for a wide	e range of nuclear medicine radionuclides. Click the links below for			
					more information on	key radionuclides.			
					• <u>Actinium-225</u>	• <u>Scandium-44/47</u>			
					• Bismuth-213	• <u>Strontium-82</u>			
					• <u>Fluorine-18</u>	• <u>Terbium-161</u>			
					• <u>Gallium-68</u>	 <u>Thallium-201 (Lead-201)</u> 			
					• <u>Germanium-68</u>	• <u>Thorium-227</u>			
					• <u>Indium-111</u>	• <u>Yttrium-86</u>			
					• <u>Lead-203/212</u>	• <u>Yttrium-90</u>			
					• Lutetium-177	• <u>Zirconium-89</u>			
					• <u>Radium-223</u>				

⁹⁰Sr/⁹⁰Y and ⁸²Sr

- -Precipitation vs IX vs EXC
- -Multicolumn separations
- -Extractant Bleed

⁹⁰Sr Separations

	Fuming HNO3 ppt	Cation Exchange	EXC (Sr Resin)
Method	Evaporate sample. Series of ppt: Fuming HNO ₃ , Fe(OH) ₃ , Ba(CrO ₄).	Load from dilute acid. Rinse with acid gradients to remove impurities. Recover Sr in high acid concentration.	Concentrate sample using IX or ppt. Dissolve in 8M HNO ₃ . Rinse with HNO3 – oxalic acid. Recover Sr in 0.05M HNO ₃ .
Limitations	Labor Intensive. Dangerous chemicals.	Low separation factors. Large columns and elution volumes.	Lower capacity than IX. Extractant bleed (1-octanol).
Advantages	???	Less labor. Less hazardous.	High separation factors. Small columns.
Waste	Highly acidic, large volumes. Mixed waste.	Large volumes of acidic aqueous waste. Spent IX resin.	Small volumes of acidic aqueous waste. Spent EXC resin.

Fuming Nitric Acid (Separation of Sr from Ca, Ba and Fission Products)

- 1) Add 10 mg Sr, Ba, Ca carriers.
- 2) Concentrate water samples by evaporation or carbonate ppt.
- 3) Dissolve sample in enough fuming nitric acid (90-95%) to make 80% HNO3.
- 4) Mix, heat 5 min. Centrifuge. Decant Supernate
 - Note: Explosions are likely to occur if the supernate waste is mixed with other wastes that may contain organic compounds.
- 5) Repeat 2x
- 6) Fe(OH)3 ppt to remove Ca (2-3x)
- 7) Ba(CrO4) ppt to remove Ba (2-3x)
- 8) Sr-oxalate ppt to concentrate and mount final Sr source.

Simplified scheme needed for separation of ⁹⁰Sr/⁹⁰Y.

Coryell and Sugarman, <u>Radiochemical Studies: The Fission Products</u> (McGraw-Hill Book Co., New York, 1951), N.N.E.S. Div. IV, Vol. 9, Book 3, Paper 236.

Cation Exchange

Small separation factors (α_{γ/Sr} ~20) -Large columns -Large elution volumes IX very useful for concentrating metal ions from large volumes and convert from low to high acidity.

Remove common matrix ions such as Na⁺ and K⁺.

⁹⁰Y (Sr Resin, RE Resin)

Dietz, M.L., Horwitz, E.P., 2000. Applications of extraction chromatography in the development of radionuclide generator systems for nuclear medicine, Ind. Eng. Chem. Res. 39, 3181-3188.

Sr Resin **RE** Resin 10⁵ 10⁵ Crown ether in 1-octanol RE = CMPO in TBP RE-2 = CMPO in DA[AP] 10^{4} -10⁴ Pb(II` 10³ · 10³ Sr(Y(III) ≥ 10² -Å 10² Ba(II) 10¹ **10**¹ K(I) 10⁰ 10⁰ Dw Y(III) and Ca(II) Dw Sr, Ba, Ca, Pb, K <1 for all HNO₃ < 1 for all HNO3 10⁻¹ 10⁻¹ 0.1 10 10 0.1 [HNO₃], M [HNO₃], M

Sr-90 retained on Sr Resin

Sr-90 recovered in 0.05M HNO3.

Y-90 retained on RE Resin.

Y-90 recovered in dilute HCI.

Relatively high extractant bleed (octanol and TBP).

HNO3 and Fe carryover into HCl strip of Y-90.9

Options for extractant bleed

- Bonded ion exchangers (Use after EXC)
 - Stable in highly acidic conditions.
- Bonded silica ion exchangers (Use after EXC)
 - Stable from pH ~ 2-10.
- Polymeric scavengers (Use after EXC)
 - Stable in highly acidic conditions
- Bonded silica scavengers (C18, use after EXC)
 - Stable from pH ~2-10
- Alumina / Inorganic ion exchangers (Use after EXC)
 Can leach metal ions

Relative extractant bleed

- High
- Sr Resin
- Pb Resin
 isodecanol

1-octanol

TBP

Dipex

HDEHP

HEH[HEP]

H[DTMPP]

Aliquat-336

DAAP

- TRU/RE
- Ac Resin
- LN
- LN2
- LN3
- TEVA

eichrom

- UTEVA
- DGA, Normal TODGA
- DGA, Branched TEHDGA

higher at high pH higher at high pH higher at high pH higher at high pH higher at high pH

Low

www.eichrom.com

⁹⁰Y (Sr Resin, DGA Resin)

D.R. McAlister, E.P. Horwitz, "Extraction of Selected Metal Ions by Mixtures of Diglycolamides and Crown Ethers," Solv. Extr. Ion Exch., accepted (2020), http://dx.doi.org/10.1080/07366299.2020.1831249.

Sr-90 retained on Sr Resin Sr-90 recovered in 0.05M HNO3.

Y-90 retained on DGA Resin.

Y-90 recovered in dilute HCl.

Lower extractant bleed (octanol).

2-3M HCl rinse prior to recovery of Y-90 eliminates HNO3 carryover and Sr impurity.

Higher Y retention = smaller columns

⁹⁰Y (DGA-Sr Resin), TODGA replaces 1-octanol diluent

Sr-90 and Y-90 retained on single resin.
Sr-90 recovered in 2M HCl or 0.05M HNO3.
Y-90 recovered in dilute HCl.
Lowest extractant bleed (no octanol).
2-3M HCl rinse prior to recovery of Y-90 eliminates HNO3 carryover and Sr impurity.
Higher Y retention = smaller columns

D.R. McAlister, D. Silvestri, E. Rush, E.P. Horwitz, "Extraction of Selected Metal Ions by Mixtures of Diglycolamides and Crown Ethers," *Solv. Extr. Ion Exch.*, 39(2), 184-203 (2021).

Sr-82 Flowsheet (50 grams Rb target)

Dunin, A.V., Nerozin, N.A., Togaeva, N.R., Khamyanov, S.V., Shapovalov, V.V. 2014. Extraction of Sr-82, Raw Material for Radiopharmaceutical Production. Pharmaceutical Chemistry Journal, 48(6), 395-397.

Sr-82 Flowsheet (50 grams Rb target)

TABLE 1. Technical Characteristics of Strontium-82					
Parameter	Norm				
Specific activity of Sr-82, TBq/g (Ci/g), at least	0.9(25)				
Activity concentration of Sr-82, GBq/mL (mCi/mL), at least	2.2(60)				
Total chemical impurities, µg/cm3, less than	20				
Radionuclidic impurities, mCi/mCi 82Sr, less than					
Rb-83	0.0015				
Rb-84	0.0001				
Rb-86	0.0015				
Sr-85	0.0001				
HCl or HNO ₃ concentration	0.05 - 0.5				

Dunin, A.V., Nerozin, N.A., Togaeva, N.R., Khamyanov, S.V., Shapovalov, V.V. 2014. Extraction of Sr-82, Raw Material for Radiopharmaceutical Production. Pharmaceutical Chemistry Journal, 48(6), 395-397.

²²⁵Ac/²¹³Bi

-Standard Cow Generator -Multicolumn Selectivity Inversion Generator

²²⁵Ac³⁺ / ²¹³Bi³⁺

Bi-213 Generators (Standard Cow)

Scheme of Ac-225/Bi-213 generator with Ac-225 distribution profile

Elution with 0.1M HCI/Nal

30-40 mCi Ac-225: - 75+10% Yield of Bi-213 - <0.0002% Ac-225 impurity **Application to clinical levels** of ²²⁵Ac could require multiple small generators or different technique.

http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/42/022/42022139.pdf

Multi-Column Selectivity Inversion Generators (MSIG)

D. R. McAlister and E. P. Horwitz, "Automated two column generator systems for medical radionuclides," *Applied Radiation and Isotopes*, 67, 1985-1991, (2009).

Bi-213 Generators (Summary Table)

Generator	Resins	Yield	Ac impurity	Matrix
Cow	MP50	76%	<2 E-5 %	0.6 mL 0.1M HCI/HI
MSIG	UTEVA 50Wx8 Prefilter	87%	<1 E-7%	2.0 mL 0.5M NaOAc 0.75M NaCl, pH 4.0

A. N. Vasiliev, V. A. Zobnin, Yu. S. Pavlov & V. M. Chudakov (2020) Radiation Stability of Sorbents in Medical ²²⁵Ac/²¹³Bi Generators, Solvent Extraction and Ion Exchange, DOI: <u>10.1080/07366299.2020.1846892</u>

^{232/229}Th/²²⁵Ra/²²⁵Ac (²²⁵Ac Production Methods)
 -Solvent Extraction vs Ion Exchange vs EXC
 -Importance of Selectivity
 -Large Target Separations

²²⁵Ac³⁺ Sources

Nuclide	Half Life	Decay	Production	²³³ U (1.592 E5 y)
²³³ U	1.592 E5 y	α (4.5 – 4.8 MeV)	Thermal Breeder Reactors: $^{1}n + ^{232}Th \rightarrow ^{233}Th \rightarrow ^{233}Pa \rightarrow ^{233}U$	
²²⁹ Th	7932 у	α (4.5 – 5.1 MeV)	Decay ²³³ U	Ļ
²²⁵ Ac	10 d	α (5.0 – 5.8 MeV)	Decay ²²⁹ Th Proton Spallation ²³² Th	²²⁹ Th (7932y)
²²⁵ Ra	14.9 d	β⁻ (356 keV)	Decay ²²⁹ Th Proton Spallation ²³² Th	²²⁵ Ac (10 d)
²¹³ Bi	45.6 m	α (5.6 – 5.9 MeV), 2.2% β⁻ (1423 keV), 97.8%	Decay ²²⁵ Ac	(14.9 d) 225 Ra
²²⁷ Ac	21.77 у	α (4.4 – 5.0 MeV), 1.38% β ⁻ (44.8 keV), 98.62%	Decay ²³⁵ U Proton Spallation ²³² Th	ł

High energy protons strip neutrons and fragments from thorium forming lighter nuclides.

Fragments can also combine with thorium to form heavier nuclides.

Ac-225 Separation Schemes

²³²Th(p,x)²²⁵Ac (²²⁷Ac impurity) ²³²Th(p,x)²²⁵Ra (β -)²²⁵Ac

<u>Primary Separation:</u> (Th Removal) SX (DA[AP]) – HNO_3 Anion Exchange (MP1 or 1x8) - HNO_3 Cation Exchange (50Wx8) - H_2SO_4 or Citrate

²²⁷Ac???

Secondary Columns: UTEVA/DGA, cation exchange

- Remove remaining Th and spallation byproducts
- Separate Ac/Ra
- Remove key byproducts/impurities: ²³⁰U, ^{231/233}Pa, Ca, Fe, ¹⁴⁰La,

SX with DA[AP]

J. Harvey, J. A. Nolen, T. Kroc, I. Gomes, E. P. Horwitz, D. R. McAlister, "Production of Ac-225 via high energy proton induced spallation of Th-232," Proceedings of Application of high energy proton accelerators, Fermilab, Chicago, IL, October 19-21, eds. Rajendran Raja and Shekhar Mishra, pp. 321-326 (2010).

Th Selective Separations

Extracting Th (10-50g) from HNO₃ requires very large columns (1-2 L) of 1x8 or MP-1).

High acid concentration and volume may require evaporation prior to next steps.

Harvey, J.H., Nolen, J., Vandergrift, G., Kroc, T., Gomes, I., McAlister D.R., Horwitz, E.P. 2011. Production of Actinium-225 via High Energy Proton Induced Spallation on Thorium-232. Final Technical Report DE-SC0003602. https://www.osti.gov/scitech/servlets/purl/1032 445/ 26

Ac Selective Separations

A.H. Bond, E.P. Horwitz and D.R.

McAlister, "A Multicolumn Selectivity

Dissolution of Th in H_2SO_4/HF

H₂SO₄ HF H_20

Heat H₂0 Low Solubility??!!

"Selective Separation of Radium and Actinium from Bulk Thorium Target Material," D.R. McAlister, E.P. Horwitz, R. Perron, D. Gendron, P. Causey, J.T. Harvey, 11th International Symposium on Targeted Alpha Therapy, Ottawa, Ontario, Canada, April 1-4, 2019.

Solubility curves of the hydrates of thorium sulphate.

https://www.osti.gov/servlets/purl/4844188-dg5S4r/

Dissolution of Th in H_2SO_4/HF

Cool. Mix.

H₂SO₄ ΗF H_20

Heat H₂0 Low Solubility??!!

0.6M H₂SO₄ 0.03 M HF 0.1 M Th pH 0.8 – 1.0

Th, Ac, Ra separation from H₂SO₄

75 – 100 mL cation exchange column

1-2 L of feed for (25-50 grams Th target)

Recover Ac/Ra in 400-500 mL 5M HNO3

No evaporation required for further processing.

D.R. McAlister, E.P. Horwitz, "Sulfate based system for the separation of Actinium and Radium from irradiated Thorium Target," *Applied Radiation and Isotopes*, 140, 18-23 (2018).

Ac Polishing Steps

- UTEVA (Phosphonate)
 - removes remaining Th, Pa, U

- DGA
 - retains Ac³⁺, rare earths, <u>Ca</u>

- Ra²⁺ passes both columns (Fe, Ba, Al, many fission products)

Ac Separation from Calcium and La

Ac Polishing Steps

- UTEVA and DGA (and other reagents) can have small traces of Ca impurity precondition separately
- Ac/Ca will coelute from DGA, unless special care is taken to separate them.
- Conditioning UTEVA/DGA separately can eliminate much of the Ca impurity.

²²⁵Ac Separation (8M HNO₃)

50-100 μm DGA, Normal Resin

Column 4.2 cm length 0.7 cm diameter

- Complete removal of Fe, Ba(Ra), Pb, Sr, Bi
- >95% removal of Ca
- La co-elutes with Ac

²²⁵Ac Elution (breakthrough in calcium removal)

²²⁵Ac w/ Ca Impurity

²²⁵Ac Purity (Ca Removal)

ppm/mL vs. Bed Volumes of Eluate

Slurry Packed 25-53 μm LN Resin, Preconditioned with 0.50 M (Na,H)OAc, 50(1) $^{\circ}\mathrm{C}$

Ac Separation from La

Mastren, T., Radchenko, V., Owens, A., Copping, R., Boll, R., Griswold, J.R., Mirzadeh, S., Wyant, L.E., Brugh, M., Engle, J.W., Nortier, F.M., Birnbaum, E.R, John, K.D., Fassbender, M.E. 2017. Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix. Nature Scientific Reports, 7, 8216. doi:10.1038/s41598-017-08506-9

¹⁷⁷Lu and ¹⁶¹Tb -Rare Earth Separations (low α) -Effect of Column Loading on Period

- -Effect of Column Loading on Peak Shapes
- -Milligrams Target to No-carrier added

<u>Nuclide</u>	Half Life	<u>β_{max}</u>	<u>β_{avg}</u>	<u>Photons</u>	<u>Production</u>	
¹⁷⁷ Lu	6.7 days	497 keV	130 keV	208 keV (10.4%)	¹⁷⁶ Yb(n,γ) ¹⁷⁷ Yb(β ⁻) ¹⁷⁷ Lu	
				113 keV (6.2%)		
¹⁶¹ Tb	6.9 days	593 keV	154 keV	45 keV (18%)	¹⁶⁰ Gd(n,γ) ¹⁶¹ Gd(β ⁻) ¹⁶¹ Tb	
				49 keV (17%)		
				75 keV (10.2%)		

E. P. Horwitz, D. R. McAlister, A. H. Bond, R. E. Barrans, J. M. Williamson, "A Process for the Separation of ¹⁷⁷Lu from Neutron Irradiated ¹⁷⁶Yb Targets," *Applied Radiation and Isotopes*, <u>63</u>, 23-36 (2005).

E. P. Horwitz, D. R. McAlister, M. L. Dietz, "Extraction chromatography versus solvent extraction: How similar are they?" *Sep. Sci. and Technol.*, <u>41(10)</u>, 2163-2182 (2006).

D. R. McAlister, E. P. Horwitz, "The Characterization and Novel Applications of Extraction Chromatographic Materials Containing Bis(2-ethyl-1-hexyl)phosphoric Acid, 2-ethyl-1-hexylphosphonic acid, mono 2-ethyl-1-hexyl ester and 2,4,4-trimethyl-1-pentylphosphinic acid," *Solv. Extr. Ion Exch.*, <u>25(6)</u>, 757-769 (2007).

A. Dash, M. Raghavan, A. Pillai, F.F. Knapp Jr., "Production of Lu-177 for targeted therapy: Available options," *Nucl Med Mol Imaging.*, <u>49</u>, 85-107 (2012).

Acidic Phosphorus Extractants (LN Series)

Separation Factors

Separation Factors

Separation of Yb and Lu on LN2 Resin

~2% column loading capacity

~20% column loading capacity

Scale up to 200 mL column (2%)?

Lu-177 LN2 vs DGA

DGA compliments LN2

Concentrate Yb/Lu between LN2 columns.

Reduce acidity to avoid evaporations.

Removes common impurities (Ca, Al, Fe, Na, K).

49

E. P. Horwitz, D. R. McAlister, A. H. Bond, R. E. Barrans, J. M. Williamson, "A Process for the Separation of ¹⁷⁷Lu from Neutron Irradiated ¹⁷⁶Yb Targets," *Applied Radiation and Isotopes*, <u>63</u>, 23-36 (2005).

Lu-177 (20 mL LN2 / 2-5 mL DGA)

Lu/Yb Separation on HEH[EHP] Resin (LN2) vs Yb mass

	Yb						L	u	
Yb mass (mg)	50 mg	25 mg	5 mg	0.5 mg		50 mg	25 mg	5 mg	0.5 mg
Parameter	Yb	Yb	Yb	Yb		Yb	Yb	Yb	Yb
Peak	3.00	3.34	5.10	6.38		7.33	8.85	10.13	10.62
Gaussian Width	2.02	1.67	1.30	1.11		6.63	2.99	1.77	1.81
Resolution (Yb/Lu)	1.00	2.36	3.28	2.90					
Number of Plates	35	64	246	529		20	140	524	551
Plate Height (cm)	0.5951	0.3281	0.0853	0.0397		1.0738	0.1498	0.0401	0.0381
% Column Loading	20%	10%	2%	0.2%	-	20%	10%	2%	0.2%

Tb Isotopes (Tb-161)

Larger separation factor for Tb/Ga (4.7)

Better separation on smaller column (5 mL) with higher loading (75-80%)

>98% Tb

<0.06% Gd

D.F. = 1700 for single column

Purification of ⁶⁸Ga from SnO₂ generator. Purification of ⁶⁸Ga labeled compounds. (Bonded Silicas)

⁶⁸Ga Generator

- Ge-68 adsorbed on a hydrous stannic oxide column.
- Elute Ga-68 ($t_{1/2}$ = 68 min) with 0.1M HCl.
- Ga-68 needs to be purified to ensure good labeling and purity.
 - Ge-68
 - Stable metals Sn, Fe
- Recover in a matrix suitable for labeling reaction.
- Bonded functional groups to ensure low organic bleed.

Tworowska, I., Ranganathan, D., THamake, S., Delpassand, E., Mojtahedi, A., Schultz, M., Zhernosekov, K., Marx, S., (2016). Radiosynthesis of clinical doses of 68Ga-DOTATATE (GalioMedixTM) and validation of organic-matrix-based 68Ge/68Ge generators, Nuclear Medicine and Biology, 43, 19-26.

⁶⁸Ga Generator

Collect Ga-68 from generator on SCXsilica cartridge in 0.1M HCl.

Recover Ga-68 from SCX with 5M NaCl/0.1M HCl.

low acid to allow labeling rxn at pH ~4.5
 with addition of acetate or ascorbate buffer

Label Ga-68 to small molecule.

Scavenge free Ga-68 from pH 4-5 buffer with WCX-silica.

Strong Cation Exchange

Weak Cation Exchange

Separation of ²²⁷Ac from Ac(Be) neutron sources in stainless steel capsule.

Influence of FeCl₃ on the uptake of Am(III) from HCl

FeCl₃ increases the uptake of Am(III) more than expected for the additional Cl⁻

Influence of Metal Ion on the uptake of Am(III) from 1M HCl

Other metal ions that form anionic chloride complexes show similar effect.

Bi, Tl, Fe, In, Ga.

Al shows only a modest increase due to additional Cl⁻ from AlCl₃.

Equilibria for the synergistic extraction of Am(III) from HCl + FeCl₃

M.A. Antonio, D.R. McAlister, E.P. Horwitz, "Europium(III) Diglycolamide Complex: Insights into the Coordination Chemistry of Lanthanides in Solvent Extraction," *Dalton Transactions*, 44(2), 515-521 (2015).

²²⁷Ac from Stainless Steel

²²⁷Ac from Stainless Steel

²²⁷Ac from Stainless Steel

1st Separation (DGA + Prefilter, HCl)

al Imprivition in An 227 from 216 Stainland Staal

	ΑΙ	Cr	Fe	Mg	Mn	Мо	Ni
Fraction	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)
Load ¹	0.12	225	1100	<0.0005	31	153	170
Rinse ²	0.07	4	46	<0.0003	0.38	148	3.2
Strip ³	0.0006	0.006	0.2	<0.0002	0.0004	0.13	0.0016
DF	N/A	24000	2800	N/A	40000	190	70000

¹2 grams of 316 Stainless Steel, dissolved in HCI/H₂O₂, adjusted to 50 mL 3 M HCI

²25 mL of 3 M HNO₃

R/

³20 mL of 0.1 M HCl

Polishing Step (DGA, HNO₃)

Motal Impurities in Ac 227 from 216 Stainless Stool

	Metal inputties in AC-227 from 510 Stamless Steel							
	Α	Cr	Fe	Mg	Mn	Мо	Ni	
Fraction	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	
Load ¹	ND	0.0055	0.085	ND	ND	0.0065	ND	
Oxalate Rinse ²	ND	0.003	0.043	0.016	0.0002	0.003	ND	
$HNO_3 \operatorname{Rinse}^3$	ND	ND	ND	ND	ND	ND	ND	
Strip ⁴	ND	ND	ND	ND	ND	ND	ND	
Total DF	N/A	>10 ⁷	>10 ⁷	N/A	>10 ⁶	>10 ⁶	>10 ⁶	

¹Product from 1st separation acidified to 40 mL 3 M HNO3

 2 25 mL of 3 M HNO₃ + 0.05 M oxalic acid

 $^{3}25 \text{ mL of } 3 \text{ M HNO}_{3}$

⁴20 mL of 0.1 M HCl

Conclusions

- The unique selectivity of EXC resins can simplify purification of radionuclides for nuclear medicine applications.
- Organic leaching must be considered when using EXC resins for nuclear medicine applications.
- Combinations of multiple EXC and IX columns are often needed to meet the high purity requirements for nuclear medicine.
- Ion exchange or solvent extraction can compliment EXC when high capacity or low organic impurity levels are required.

References

- "Separation of Selected Nuclear Medicine Isotopes Using Extraction Chromatography," D.R. McAlister, E.P. Horwitz, 64th Radiobioassay and Radiochemical Measurements Conference, Santa Fe, NM, Oct 27- Nov 1, 2019. <u>http://www.eichrom.com/wp-</u> <u>content/uploads/2019/11/7 McAlister RRMC-2019 Nuclear-Medicine-Separations.pdf</u>
- 2) "Selective Separation of Radium and Actinium from Bulk Thorium Target Material," D.R. McAlister, E.P. Horwitz, R. Perron, D. Gendron, P. Causey, J.T. Harvey, 11th International Symposium on Targeted Alpha Therapy, Ottawa, Ontario, Canada, April 1-4, 2019.
- 3) "Separation and Counting Options for 89/90Sr," D.R. McAlister, 63rd Radiobioassay and Radiochemical Measurements Conference, Portland, ME, May 20-25, 2018.
- 4) D. R. McAlister and E. P. Horwitz, "Automated two column generator systems for medical radionuclides," Applied Radiation and Isotopes, 67, 1985-1991, (2009).

Thank you

Questions???

www.eichrom.com