RRMC – Santa Fe, NM

$^{203}\text{Pb}/^{212}\text{Pb}$ Theranostics for Cancer

Michael K Schultz PhD
Associate Professor, Radiology, Radiation Oncology, Pediatrics, Chemistry
The University of Iowa, Iowa City, Iowa USA
Disclosures

Michael K Schultz PhD is Chief Science Officer, Viewpoint Molecular Targeting, Inc.

No drugs presented are FDA approved.

Michael K Schultz has been selected as Best Dad Ever, 2018.

Selection Committee
203Pb/212Pb Theranostics for Cancer

- Theranostics
- Rationale for α-particle therapy (vs β)
- Radionuclides for α-particle therapy
- 203Pb/212Pb based theranostics
- Preclinical imaging/therapy
- Production Chemistry
- Summary – promise and challenges
Theranostic Concepts

Combination of two words:

- **Therapeutic + Diagnostic**

- Sometimes referred to as Theragnostics and “Diapeutics.”

- Use of molecules that are labeled with radioactive atoms to identify cancer; and use the same molecule (or very closely related) to treat the cancer.

Enthusiasm about α
Targeting Cancer Cells

- **Theranostic Agent**
 - Selective Binding to Cancer Cells
 - No Binding to Normal Cells
Designing Theranostics

1. Target

Binding

2. Ligand

3. Radiation Cage

Biochemistry | Chemistry | Radiochemistry
Designing Theranostics

Target

Binding

Ligand

Diagnostic atom

Gamma Rays

PET scans
SPECT scans

Biochemistry | Chemistry | Radiochemistry
Designing Theranostics

Target

Binding

Ligand

Therapeutic atom

Alpha-Beta particles

Biochemistry | Chemistry | Radiochemistry
Theranostics – Patient Care

- Patient presents with symptoms or other tests that indicate a particular cancer.
Theranostics – Patient Care

- Patient presents with symptoms or other tests that indicate a particular cancer.
- Patient is injected with the diagnostic form.
- A medical scan is performed after a time for accumulation in the tumors.
- A dose plan is made by doctors.
Theranostics – Patient Care

- Patient presents with symptoms or other tests that indicate a particular cancer.
- Patient is injected with the diagnostic form.
- A medical scan is performed after a time for accumulation in the tumors.
- A dose plan is made by doctors.
Theranostics – Patient Care

- Patient presents with symptoms or other tests that indicate a particular cancer.
- Patient is injected with the diagnostic form.
- A medical scan is performed after a time for accumulation in the tumors.
- A dose plan is made by doctors.
- Patient is treated with the therapeutic form.
Theranostics – Patient Care

- Patient presents with symptoms or other tests that indicate a particular cancer.
- Patient is injected with the diagnostic form.
- A medical scan is performed after a time for accumulation in the tumors.
- A dose plan is made by doctors.
- Patient is treated with the therapeutic form.
- Response can be monitored with diagnostic form.
Value of Theranostics

- Diagnostic can be used to select patients for therapeutic clinical trials.
- Diagnostic can be used to develop a plan for the therapeutic dose.
- Particularly useful early in the clinical phase of development

Cancer Patients

Diagnostic Imaging

Negative for Target Positive for Target

Conventional Therapy Targeted Therapy
Why pursue alpha particle vs beta particle therapy?

68Ga-PSMA-11 PET/CT scans of patient A. Pretherapeutic tumor spread (A), restaging 2 mo after third cycle of 225Ac-PSMA-617 (B), and restaging 2 mo after one additional consolidation therapy (C). Clemens Kratochwil et al. J Nucl Med 2016;57:1941-1944

12/2014
PSA = 2,923 ng/mL

7/2015
PSA = 0.26 ng/mL

9/2015
PSA < 0.1 ng/mL
Why pursue alpha particle therapy?

Progression after beta particle therapy.

Virtual complete response to alpha therapy.

α vs β particle properties

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-</td>
<td>10^{-31} kg</td>
<td><2 MeV</td>
</tr>
<tr>
<td>α</td>
<td>10^{-27} kg</td>
<td>4-9 MeV</td>
</tr>
</tbody>
</table>

- **Falzone et al., TheraNostics, 2018**
 - Modeled RBE of 212Pb vs 177Lu
 - 212Pb may be more effective in short range

- **Lee et al., Radiation Research, 2018**
 - Depth-dose distributions 212Pb vs 225Ac
 - Internalization improves RBE
Promising α-Emitter “Series”

- Actinium-225 (Ac-225, 225Ac) 10 d
- Lead-212 (Pb-212, 212Pb) 11 h
- Thorium-227 (Th-227, 227Th) 18 d
- Radium-223 (Ra-223, 223Ra) 11 d
- Astatine-211 (At-211, 211At) 7 h

$m_1 v_1 = m_2 v_2$
Ac vs Pb

Actinium-225
- $T_{1/2} = 10$ d (5α's)
- Central prod./distr.
- Capacity? Impurity?
- Fast daughter ingrowth
- mAbs (biological $T_{1/2}$)
- “Stable” Bi endproduct
- No matching imaging isotope

Lead-212
- $T_{1/2} = 11$ h (2α’s)
- 224Ra Generator ($T_{1/2} = 3.7$ d)
- Slower daughter ingrowth
- Peptides, small molecules
- 212Bi generator possible
- Stable Pb endproduct
- 203Pb elementally matched
203Pb/212Pb Theranostic Pair

- **203Pb** – diagnostic

 - $^{203}\text{Pb} \rightarrow ^{203}\text{Tl}$ (EC; stable)
 - 279 keV gamma (SPECT; $I = 81\%$)
 - $T_{1/2} = 52\;\text{h}$ (patient selection and dosimetry)

- **212Pb** – therapeautic

 - $^{212}\text{Pb} \rightarrow ^{212}\text{Bi}$ (β; $I = 100\%$)
 - Two α’s in “series” (^{212}Bi and ^{212}Po)
 - $T_{1/2} = 11\;\text{h}$ (peptides, small molecules, faB's, RNA aptamers)

Li et al., 2017 *Appl. Rad. Isot.*
212/203Pb Chelators

DOTA
TCMC
PSC

Commercially Available

Iowa
Specifications

1. Full Automated
2. Single use cassettes
3. Sterile
4. Pyrogen free
5. Radiochemical Purity
6. Radionuclidic Purity
7. Rapid
8. Reproducible
9. ^{203}Pb and ^{212}Pb

MLPT System

Li et al., 2017 ARI
203Pb Cyclotron Production/Purification

- 203Pb – Production/Impurities

 25 MeV

 205Tl (p, 3n) 203Pb

 203Tl (p, 3n) 201Pb (T1/2 = 9.33 hours; 90 h hold)

 205Tl (p, 2n) 204mPb (T1/2 = 1.12 hours)

 203Pb (T1/2 = 51.92 hours) → 203Tl Stable

 201Pb (T1/2 = 9.33 hours) → 201Tl (T1/2 = 72.91 hours)

 204mPb (T1/2 = 1.12 hours) → 204Pb Stable
 (small, optimizing)

Lantheus Medical Imaging

Li et al., 2017 Appl. Rad. Isot.
$^{203/212}\text{Pb}$ Purification

Rapid Elution

- Elution
 - 100mg resin
 - Acetae Buffer
 - Breakthrough
 - 50mg resin
 - 2M HCl

Removal of impurities

- ^{203}Tl (p, 3n) ^{201}Pb ($T_{1/2} = 9.33$ hours; 90 h hold)
- ^{205}Tl (p, 2n) ^{204m}Pb ($T_{1/2} = 1.12$ hours)
- ^{203}Pb ($T_{1/2} = 51.92$ hours)
- ^{201}Pb ($T_{1/2} = 9.33$ hours)
- ^{204m}Pb ($T_{1/2} = 1.12$ hours)
- ^{204}Pb Stable

Manageable Pb breakthrough

Li et al., ARI 2017
212Pb Production/Decay

Generator

228Th
2 y

224Ra
4 d

α

220Rn
1 min.

α

216Po
0.1 s

β

212Bi
60 min.

α

212Po
0.3 μs

β

212Pb
11 h

β

208Pb
stable

208Tl
3 min.

α

Process Basics
1. Ra-224 Generator Shipped.
2. Pb-212 Eluted from Generator.
3. Pb-212 Chelated to Ligand.
4. Pb-212 labeled ligand injected.

Potential: 2 α + 3 β

Li et al., 2017 Appl. Rad. Isot.
^{212}Pb Production/Purification

- **Generators** (ORNL; Orano Med)

Impurities

- **Metals** (Fe, Ni, Cu, Tl, Ba, Pb)
 - Purification Pb-resin (Eichrom Technologies)

- **Radionuclides**
 - Th-228/232, Ra-224, U-232, actinides α-spec. (<MDA)
 - Ra-224 breakthrough (<MDA)

Li et al., 2017 Appl. Rad. Isot.
Image-guided therapy for cancer

• Metastatic melanoma

Cancer of the skin
Melanoma is fastest growing cancer incidence in the US
Most diagnosed cancer in young adults under 30 years
Very poor prognosis for metastatic disease
Target: Melanocortin subtype 1 receptor (MC1R)

• Neuroendocrine tumors

Enigmatic cancer of the endocrine system
Poor prognosis
Current therapies are largely palliative
Target: somatostatin subtype 2 receptor (SST2R)
^{203}Pb SPECT/CT (SST2R+ models)

$[^{203}\text{Pb}]\text{DOTATOC SPECT}$

A

- BON-1
- IMR-32

B

- IMR-32 Blocking

NET/Carcinoid

Neuroblastoma

Lee et al., In Prep

SUPPORTED BY THE IOWA NEUROENDOCRINE TUMOR SPORE
203Pb SPECT (MC1R+ model)

No Blocking

Blocking

Li et al., Molecular Pharmaceutics, 2019
VMT-\(\alpha\)-NET Preclinical Development

\[\text{[}^{203}\text{Pb}]\text{DOTATOC} \quad \text{[}^{203}\text{Pb}]\text{PSC-TOC} \quad \text{[}^{203}\text{Pb}]\text{PSC-PEG2-TOC (VMT-\(\alpha\)-NET)}\]

A. 3 h

** vs DOTATOC

*** vs DOTATOC

p<0.008

B. 24 h

** vs DOTATOC

p<0.02

*** vs DOTATOC

p<0.006

C. Tumor-to-kidney ratio in %ID/g

*** vs DOTATOC

p<0.003

VMT-\(\alpha\)-NET improved tumor:kidney 8-fold vs DOTATOC
[212Pb]VMT-\(\alpha\)-NET therapy. 5.0\times10^6 AR42J rat pancreatic acinar cells were implanted on the left shoulder of athymic nu/nu female mice. After 1 week, when the average tumor size became around 150 mm\(^3\), 274 MBq (7.4 mCi) 212Pb were reacted with 30 nmol VMT-\(\alpha\)-NET (9.1 MBq/nmol) in the presence of ascorbic acid (1 mg/ml) for 20 min at 85 °C. After reaction, the radio-peptide were purified by C-18 and resuspended with saline ascorbic acid (1 mg/ml). 0.37 MBq (10 \(\mu\)Ci) and 1.85 (50 \(\mu\)Ci) of 212Pb- VMT-\(\alpha\)-NET were injected via tail vein. DL-lysine (400mg/kg) was co-injected to block the kidney uptake of the radiotherapeutic.
VMT-α-NET survival benefit and tolerability

Survival after 212Pb therapy

- Untreated
- 10 μCi
- 50 μCi

Body weight

- Untreated
- 10 μCi
- 50 μCi

Days after therapy

Average body weight (g)
Promising Summary

- $^{203}\text{Pb} / ^{212}\text{Pb}$ a promising *theranostic* pair
 - $T_{1/2}$'s – peptides, small molecules, aptamers, fAb’s
- α-particle therapy has potential advantages (vs β)
 - High LET
- Production/impurities (purifications) suitable to advance to clinical radiopharmaceuticals
 - Automated production (Li *et al.*, *Appl Rad Isot.*, 2017)
- Improved chelator for Pb^{2+} is promising – modeling could explain improved labeling observed.
- Initial ^{203}Pb NIST standardization completed
Thank you! Questions?

Acknowledgements

Schultz Lab
Mengshi Li PhD
Major Dongyoul Lee
Somya Kapoor PhD
Dustin May

Viewpoint Lab
Frances Johnson
Brenna Marks
Edwin Sagastume
Jessica Miller

Pigge Lab
Chris Pigge PhD
Moustafa Gabr PhD

O’Dorisio Lab
Sue O’Dorisio MD PhD
Dijie Liu PhD

Funding
US NIH 1P50CA174521
US NIH K25CA172218
US NIH 1R01CA167632
US NIH SBR1 Phase II HHSN2612017000-36C
US NIH R01EB017279
US NIH I-CORPS NIH HHSN261201500069C
US NIH SBR1 Phase I 1R43CA203430
US NIH HHSN261201500069C
US NIH SBR1 Phase I 1R43CA195925
US NIH HHSN261201500069C
US NIH R01EB017279
US NIH I-CORPS NIH HHSN261201500069C
US NIH R01EB017279
US NIH I-CORPS NIH HHSN261201500069C
US NIH R01EB017279
US NIH I-CORPS NIH HHSN261201500069C
US NIH R01EB017279

INVICRO, Inc
Takeda Pharmaceuticals
Eichrom Technologies, Inc.
ICTS, University of Iowa
Holden Comprehensive Cancer Center
Iowa Department of Public Health
Iowa Economic Development Authority
Iowa Bio
Iowa Innovation Corporation
UI Melanoma Mog Mo Milhem MD

Clinical Trials Network
John Sunderland PhD
Michael Graham MD PhD
Jon Maconathy PhD

Lantheus Medical Imaging
Chematech
Eichrom Technologies

SNMMI
Bonnie Clarke
Ruth Lim MD PhD

SNMII

Clinical Trials Network
John Sunderland PhD
Michael Graham MD PhD
Jon Maconathy PhD

O’Dorisio Lab
Sue O’Dorisio MD PhD
Dijie Liu PhD

Lantheus Medical Imaging
Chematech
Eichrom Technologies

SNMMI
Bonnie Clarke
Ruth Lim MD PhD

Clinical Trials Network
John Sunderland PhD
Michael Graham MD PhD
Jon Maconathy PhD

O’Dorisio Lab
Sue O’Dorisio MD PhD
Dijie Liu PhD

Lantheus Medical Imaging
Chematech
Eichrom Technologies