

Extraction Chromatography Separation of Zirconium-93

Ben Russell, Peter Ivanov, Heather Thompkins, Simon Jerome

National Physical Laboratory

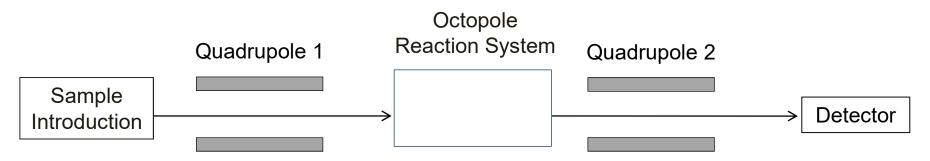
Overview

- Importance of zirconium-93
- Measurement of zirconium-93
- Batch separation results
- Chromatographic separation results
- Conclusions and future work

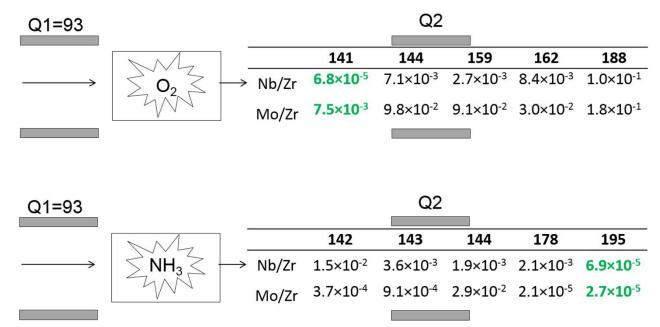
Zirconium-93

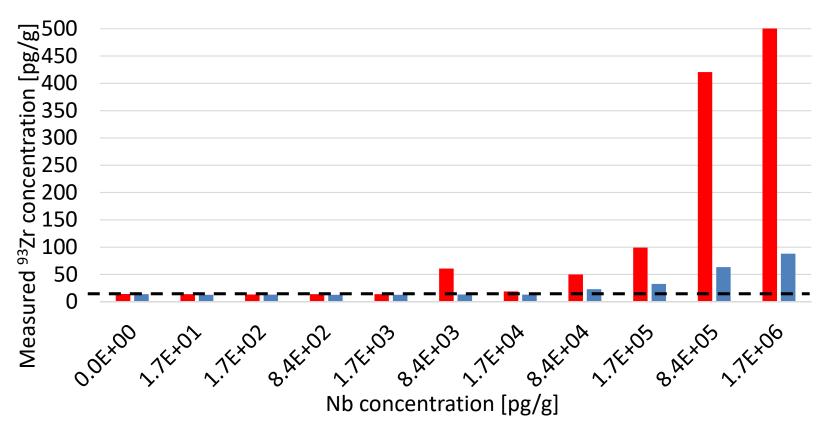
- High yield fission product (6.35 %), and activation of stable Zr in zircalloy fuel cladding
- Significant contributor to total waste inventory over longer timescales
- Half-life = 1.64×10^6 years
- Beta-emitter (maximum decay energy 60 keV)
- Measurable by LSC and ICP-MS
- Interference separation required prior to measurement
 - Mass spectrometric interference from ⁹³Nb and ⁹³Mo

Zirconium-93 Standardisation



Technique	Activity (Bq/g)
CIEMAT/NIST	1046 ± 24
TDCR	1030 ± 23
DCC	1028 ± 17
Average	1035 ± 24 (k=1)


- ^{93m}Nb impurity of 6.4 ± 1.3 Bq/g
- ⁹³Zr dilutions measured by LSC down to 1 Bq/g

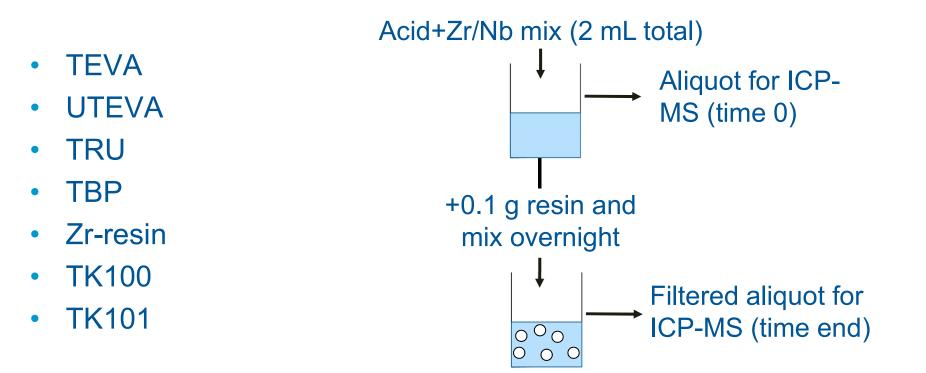

- Initial trials using stable element standards of Zr, Nb and Mo
- O₂ and NH₃ reaction gases investigated for Zr/Nb and Zr/Mo separation as rapid support to offline chemical separation

Reaction cell separation of ⁹³Zr spiked with ⁹³Nb

■ 93 -> 141 Zr [O2] ■ 93 -> 195 93Zr NH3]

ICP-MS/MS can be used to support chemical separation

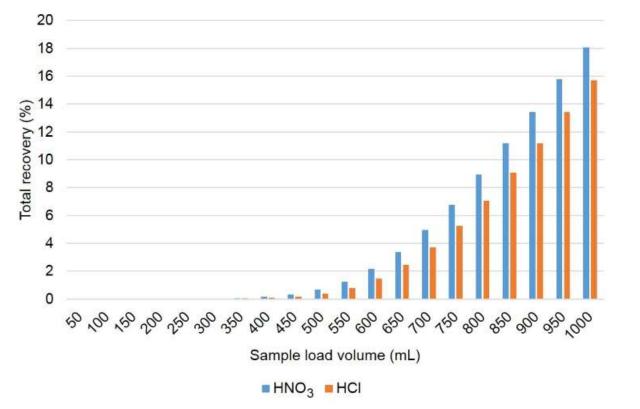
Chemical separation of Zr/Nb: previous methods



Reference	Resin	Zr elution	Nb elution
Triskem	UTEVA	0.1-0.5 M H ₂ C ₂ O ₄	9 M HNO ₃ /100µL H ₂ O ₂
Busse et al. (2002)	AG1-X8	8M HCI	3 M HCl or 7M HCl + 0.1 M $H_2C_2O_4$
Oliveira (2010 and 2014)	TRU	2M HCI (12 mL)	
	TEVA	DI water (12 mL)	
Radchenko et al. (2014)	AG-1	2 M HCI 0.5 % H ₂ O ₂	
· · · ·	UTEVA	5.5 M HCI	2.2 M HCI
Shimada et al. (2014)	TEVA	10 M HCI/0.1 M HF	8-10 M HNO ₃ /0.1 M HF
Dulanska et al. (2012)	AG-1	20 mL 35 % HCl with 20 mL 0.5 M HF	
Remenec et al. (2014)	TEVA	7 M HCI	

Batch separation

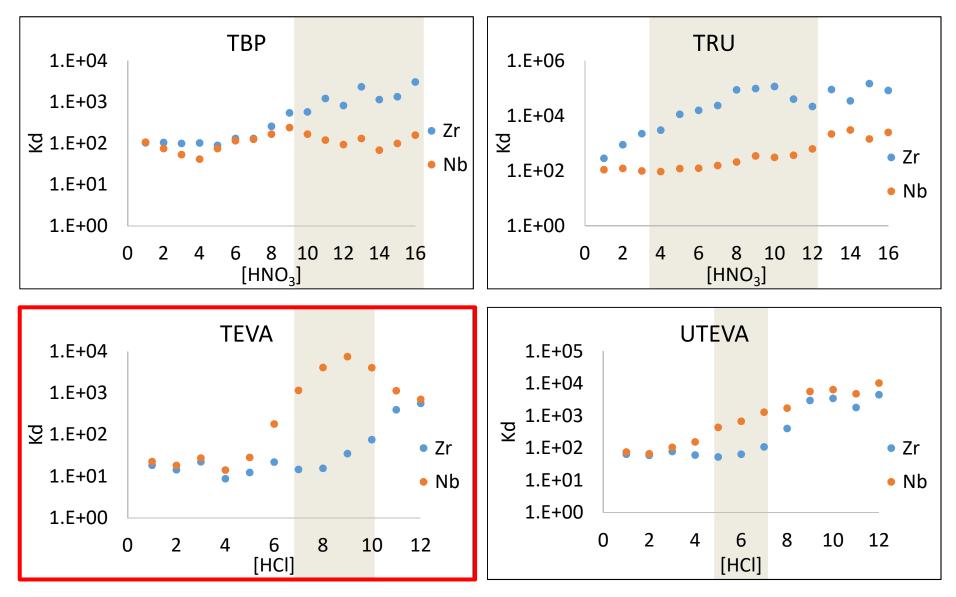
- Triskem resins investigated in HCI and HNO₃
- Mixed stable Zr and Nb measured by ICP-MS



Batch separation results

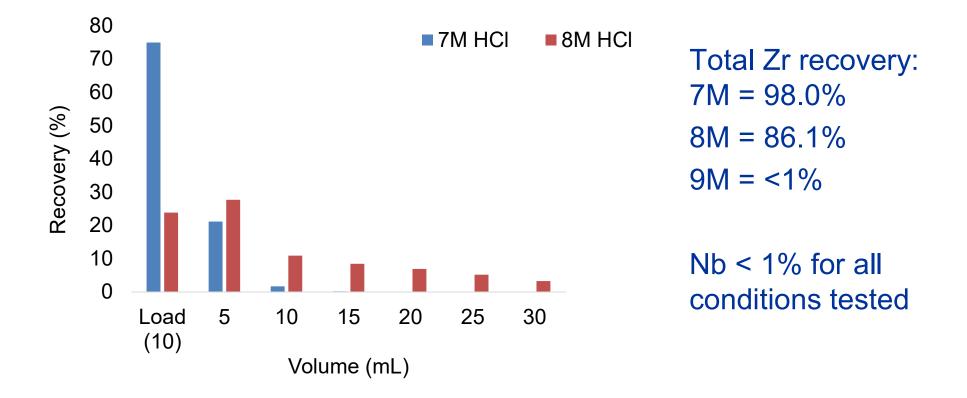
- Similar distribution coefficients for Zr and Nb for multiple resins:
 - **TK100** (10⁴-10⁵ achievable)
 - TK101
 - TEVA (HNO₃)
 - TBP (HCI)
 - Zr-resin (10⁴-10⁵ achievable)
 - TRU (HCI)

TK100 resin for high volume water samples

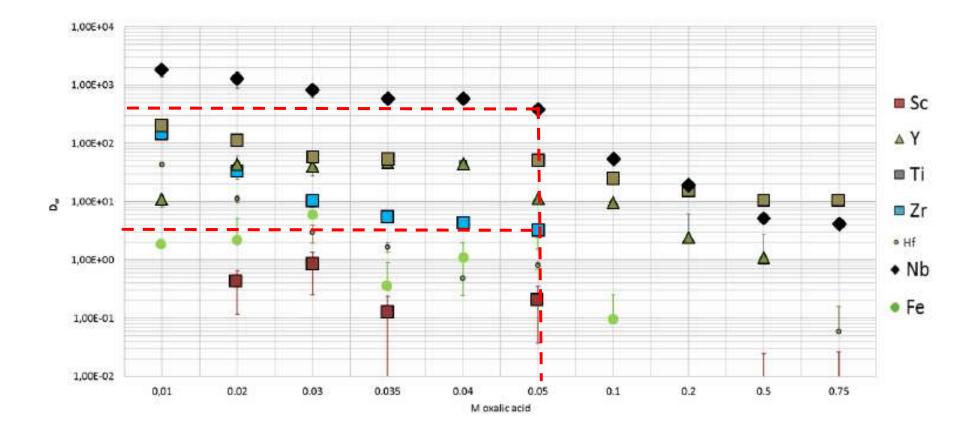


- No ⁹⁰Sr loss up to 400 mL, or ²²⁶Ra up to 1 L
- No elution of Zr

Batch separation results

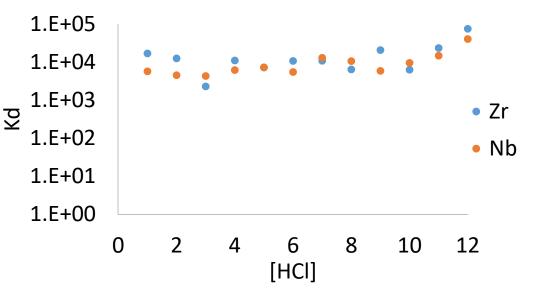


Chromatographic separation



- TEVA based on lower distribution coefficient for Zr compared to Nb in 7-9 M HCI
- 2 mL pre-packed column using a vacuum box

Zr-resin



Zr-resin

- Good retention of Zr and Nb in HCI
- Zr more readily eluted in oxalic acid

- Load in 7 M HCI
- 10 mL water wash
- 10 mL 0.01 0.1M oxalic acid
- Optimal conditions not yet determined

Oxalic acid concentration (M)	Recovery in 10 mL	
	Zr recovery (%)	Nb recovery (%)
0.01	26.6	1.2
0.05	26.5	4.0
0.1	41.4	34.6

Conclusions and future work

- Zirconium-93 a key long-lived fission and activation product for decommissioning and long term monitoring of nuclear waste
- Multiple extraction chromatography resins tested- TEVA and Zr-resin most promising
- Additional resins to be tested e.g. TK400 to establish optimal procedure
- Procedure will then be applied to ⁹³Zr in dissolved steel

Acknowledgements

Chemical separation

Aude Bombard and Steffen Happel (Triskem)

ICP-MS Panayot Petrov, David Douglas and Heidi Goenega-Infante (LGC)

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).

EMRP Metology Research Programme EURAMET e EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS