eichrom

Measurement of ³⁶Cl and ¹²⁹l in Water

AN-1701-10

Summary of Method Chlorine-36 and Iodine-129 are separated and measured from up to 500mL aliquots of water. Samples are adjusted to 0.1-1.0M H₂SO₄ and 0.1M SnSO₄ is added to ensure reduction of any oxidized species to chloride (Cl⁻) and Iodide (I⁻). The CL resin is prepared by Ioading with Ag⁺ cations which will facilitate the retention of Cl⁻ and I⁻. The sample is Ioaded onto the CL Resin, the column is rinsed with deionized water, and Cl⁻ is recovered using 0.1M ammonium thiocyanate (NH₄SCN). If iodine determination is also required, the resin is the rinsed with 0.1% NaOH and then I⁻ is recovered using 0.35M sodium sulfide (Na₂S). ³⁶Cl (t_{1/2} = 3.01E5 years, β_{mean}^- = 251keV, β_{max}^- = 709.55keV, abundance = 98.1%) and ¹²⁹I (t_{1/2} = 1.57E7 years, β_{mean}^- = 40.03keV, β_{max}^- = 149.3keV, abundance = 100%) can then be measured using liquid scintillation counting.

Reagents

CI Resin Bulk (CL-B50-A or CL-B50-S)* -or-CI Resin Prepacked 2mL columns (CL-C50-A) Deionized Water NaOH *If packing own columns for H₂SO₄ gravity flow, then use CL-B50-A. SnSO₄ If using vacuum assisted flow, Na₂S then use CL-B50-S. NH₄SCN AgNO₃ (or Solution of 10mg/mL Ag⁺) Liquid Scintillation Cocktail

Equipment

Centrifuge tubes - 50mL Liquid scintillation vials, 20mL glass Liquid scintillation counter Calibrated pipets and disposable tips Appropriately sized glass beakers and flasks Analytical balance Filter funnel and paper **Optional:** Empty columns and frits for packing own columns

Sample Preparation

Up to 500mL of water sample in glass beaker.

Adjust to 0.1-1.0M H₂SO₄.

Add 1 mL of 0.1M SnSO₄ per 50mL of sample.

CL Resin Preparation (Batch Mode)

Reagent amounts may be adjusted proportionally to as needed.

Weigh 10 grams CL Resin into a 250mL flask.

Dissolve 0.65 grams AgNO_3 in 100mL 1M $H_2SO_4.$

Add Ag/H_2SO_4 solution to resin and Mix for 2 hrs.

Filter CL Resin and rinse twice with 1M H₂SO₄.

Slurry resin in 100mL 0.1M H₂SO₄ and pack into the appropriate sized column.

CL Resin Preparation (Column)

Reagent amounts may be adjusted

Slurry resin in 100mL 0.1M H₂SO₄ and pack into the appropriate sized column or obtain prepacked 2mL column of CL Resin.

Rinse 2mL column with 10mL 1M H_2SO_4 .

Dissolve 0.65 grams AgNO₃ in 100mL 1M H₂SO₄. Load 2 mL of solution onto each 2mL column. Wait 2hr for Ag to be completely absorbed.

Rinse 2mL column with 10mL 1M H_2SO_4 .

Mix sample well.

Chlorine/Iodine Separation

- 1) Load Sample onto 2mL CL Resin column at 2mL/min.
- 2) Rinse 2mL CL Resin column with 10mL 0.1M H_2SO_4 .
- 3) Rinse 2mL CL Resin column with 10mL deionized water.
- Strip 2mL CL Resin into 20mL LSC vial with 5mL 0.1M NH₄SCN to recover chloride.
- 5) Rinse 2mL CL Resin column with 10mL 0.1% NaOH.
- Strip 2mL CL Resin column into a 2mL LSC vial with 5mL 0.35M Na₂S.
- 7) Add 15 LSC cocktail to each LSC vial.
- 8) Count ³⁶Cl and ¹²⁹l samples by LSC.

Decontamination Factors (DF)		
for Chloride and Iodide Frations		
Analyte	DF CI- fraction	DF I- fraction
Ва	>1000	>600
Cd	>6900	>7700
Cu	>210	>190
Mn	>210	>370
Ni	>170	>320
Pb	>300	>720
U	>1900	>200
⁶⁰ Co	>320	>320
¹³⁷ Cs	>150	>150
⁹⁰ Sr/ ⁹⁰ Y	>180	>160
³⁶ Cl	N/A	>160
¹²⁹	>420	N/A

Retention of Cl and I		
on CL Resin from 1M H ₂ SO ₄		
Analyte	Dw	
³⁶ Cl	1600	
¹²⁹	1980	

Chloride capcity: 4 mg / 2mL column Iodide capcity: 15 mg / 2mL column

References

1) A. Zulauf, S. Happel, M.B. Mokili, A. Bombard, H. Jungclas, "Characterization of an extraction chromatographic resin for the separation and determination of 36Cl and 129I." J. Radioanal. Nucl. Chem. 286(2), 539-546 (2010).