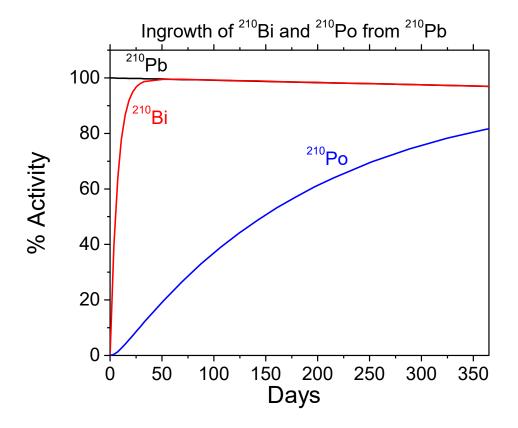
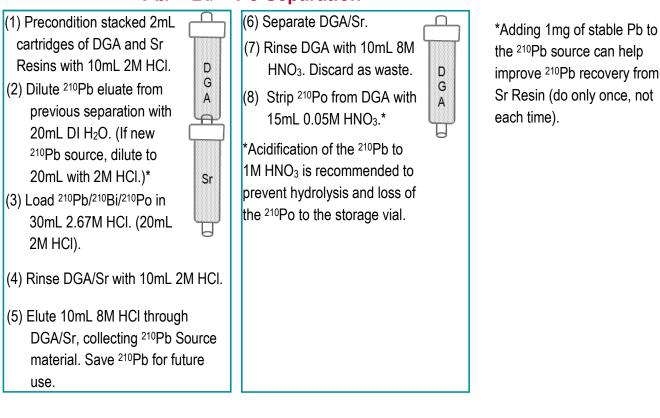
eichrom[.]

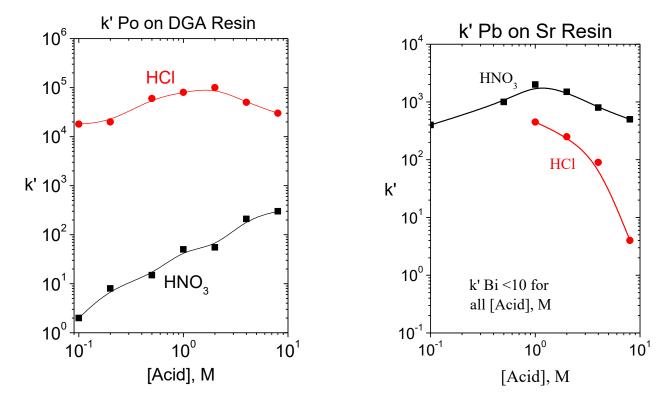
²¹⁰Po Generator

AN-1616b-11


Summary of Method A method for the preparation of ²¹⁰Po (t_{1/2} = 138.4 days) from ²¹⁰Pb (t_{1/2} = 22.26 years) source material is presented. The method employs 2mL cartridges of DGA and Sr resins to obtain high purity ²¹⁰Po in small volumes of eluate while preserving valuable ²¹⁰Pb source material. The source material, containing ²¹⁰Pb/²¹⁰Bi/²¹⁰Bi in 2.67M HCl, is loaded onto stacked 2mL cartridges of DGA and Sr resins. ²¹⁰Po and ²¹⁰Bi are retained on DGA Resin, while ²¹⁰Pb is retained on Sr Resin. The ²¹⁰Pb source is recovered from Sr Resin with a small volume of 8M HCl. Following a suitable ingrowth period, the ²¹⁰Pb can be diluted to 2.67M HCl and used to produce additional ²¹⁰Po. The ²¹⁰Pb is preserved nearly indefinitely and continuously purified from chemical and radiologic impurities run to run. ²¹⁰Po is recovered from DGA resin with 0.05M HN0₃, but should be acidified to 1M HNO₃ to prevent loss of Po to glass vials. The ²¹⁰Bi will remain on the DGA resin during the Po elution, and can be recovered with 10mL of 0.05M ammonium bioxalate. The DGA/Sr Resin chemistry is an improvement over the UTEVA/Sr Resin chemistry previously described (AN-1616a), which required 6M HNO₃ to recover the ²¹⁰Po.

Reagents


Sr Resin Cartridges (Eichrom SR-R50-S) DGA, Normal Cartridges (Eichrom DN-R50-S) Liquid Scintillation Cocktail ²¹⁰Pb Source Deionized Water HCI HNO₃


Equipment

Glass vials for storage of ²¹⁰Pb source. Glass or plastic vials/bottles for collection of ²¹⁰Po, ²¹⁰Bi and waste. 10, 20 or 30mL plastic luer lock syringes Liquid Scintillation System for measurement of ²¹⁰Bi and ²¹⁰Po. Gamma Spectrometry System for measurement of ²¹⁰Pb.

²¹⁰Pb/²¹⁰Bi/²¹⁰Po Separation

References

1) McAlister and Horwitz, "Chromatographic Generator Systems for the actinides and natural decay series elements," *Radiochimica Acta*, 99:1-9 (2011).