

Metal Impurities in Uranium, Plutonium and Mixed Oxides

Introduction: Metal impurities in uranium, plutonium and mixed oxides are measured in nuclear power plant fuel, weapons and waste. ICP-AES, ICP-MS, TIMS and alpha spectroscopy are used to measure a wide variety of impurities. New methods have been developed to shorten the analysis time, decrease waste generation and improve precision of these analyses.

The Approach: To avoid the need to maintain gram per liter Pu and U standards for matrix matching, these new methods remove the uranium and/or plutonium from the sample prior to

instrumental analysis. The approach is quite versatile, allowing U only to be removed, while Pu and other metals pass, or capturing both U and Pu together while allowing the other matrix impurities to pass and be analyzed.

For example, the specification for neptunium and plutonium in nuclear fuel is less than, 3.3 Bq/g U. Removal of the uranium from the sample matrix makes the use of alpha spectroscopy possible by eliminating uranium self adsorption and the source of an interfering spectra from ²³⁴U which overlaps with ²³⁷Np at 4.7 MeV.

Uranium and/or Plutonium are removed from the sample by the use of an extraction chromatographic resin, marketed under the name of UTEVA[®] Resin. This resin is comprised of diamyl amylphosphonate sorbed on an inert polymeric support. A nitric acid uptake curve for UTEVA Resin is shown in Figure 1. Virtually no other metals sorb on UTEVA when loaded from nitric acid.

Figure 1. UTEVA Resin Acid Dependency

References:

- C. Good, Third International Uranium Hexafuoride Conference, Paducah KY, (1995)
- S. L. Maxwell, III, Eichrom Western Users' Group Workshop, Albuquerque, MN (2000)
- M. J. Brisson, ACS Spring National Meeting, Orlando, FL (2002)

Case History 1: Analysis of impurities in Pu/U.

A method has been developed and implemented at the Washington Savannah River site to characterize legacy U and Pu solids stored for over a quarter of a century. Analysis was required as part of a stabilization and repackaging program associated with long term storage. Over 1600 cans of material were analyzed containing various amounts of U and Pu-239. Figure 2 is a schematic of the U/Pu removal using UTEVA Resin. Uranium and plutonium samples were spiked with a variety of metals. Their ICP-MS recoveries are presented in Table 1.

Figure 2. U/Pu matrix removal using UTEVA Resin for trace metal analysis.

Case History 2: Analysis of transuranic elements in UF₆

A variation on the method in case 1 allows for the collection and measurement of plutonium with the trace metal fraction. This is accomplished by dissolving the uranium sample in both 2 M nitric acid

and 0.1 M oxalic acid. After a 15 mL 0.1 M oxalic acid/ 2 M nitric acid rinse, the combined load and rinse are passed through one additional UTEVA column. This accomplishes the $>10^8$ decontamination factor for uranium based on a 0.5 gram sample of 4.4% enriched U.

Eichrom Technologies, Inc. 8205 S. Cass Ave. Suite 106 Darien, Illinois 60561 USA +1-630-963-0320 (tel) info@eichrom.com Table 1

Element	% Recovery
Ag	106
Al	101
As	88
В	89
Ba	106
Be	90
Ca	NA
Cd	94
Ce	108
Cr	103
Cu	106
Fe	106
Ga	101
Hf	90
HG	77
K	102
La	108
Li	101
Mg	103
Мо	101
Na	98
Nb	98
Ni	103
Р	154
Pb	99
Se	87
Si	132
Ta	84
V	104
W	113
Zn	91
Zr	63

www.eichrom.com

Eichrom Europe Campus de Ker Lann Parc de Lormandière – Bât. C rue Maryse Bastié 35170 Bruz – FRANCE +33 (0)2 23 50 13 80 (tel) EichromEurope@eichrom.com