

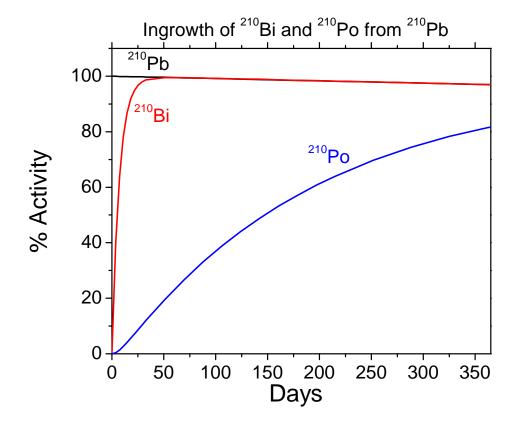
²¹⁰Po/²¹⁰Bi Generator

AN-1616-10

Summary of Method A method for the preparation of 210 Po ($t_{1/2} = 138.4$ days) and 210 Bi ($t_{1/2} = 5.013$ days) from 210 Pb ($t_{1/2} = 22.26$ years) source material is presented. The method employs 2mL cartridges of DGA and Sr resins to obtain high purity 210 Po and 210 Bi in small volumes of eluate while preserving valuable 210 Pb source material. The source material, containing 210 Pb/ 210 Bi/ 210 Bi in 2.67M HCl, is loaded onto stacked 2mL cartridges of DGA and Sr resins. 210 Po is retained on DGA Resin, while 210 Pb is retained on Sr Resin and 210 Bi is not retained. The 210 Pb source is recovered from Sr Resin with a small volume of 8M HCl. Following a suitable ingrowth period, the 210 Pb can be diluted to 2.67M HCl and used to produce additional 210 Po and 210 Bi. The 210 Pb is preserved nearly indefinitely and continuously purified from chemical and radiologic impurities run to run. 210 Po is recovered from DGA resin with 0.5M HN03. The DGA/Sr Resin chemistry is an improvement over the UTEVA/Sr Resin chemistry previously described. The UTEVA/Sr Resin system required 6M HNO3 to recover the 210 Po.

Reagents

Sr Resin Cartridges (Eichrom SR-R50-S)
DGA, Normal Cartridges (Eichrom DN-R50-S)
Liquid Scintillation Cocktail
²¹⁰Pb Source
Deionized Water
HCI
HNO₃


Equipment

Glass vials for storage of ²¹⁰Pb source.

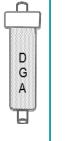
Glass or plastic vials/bottles for collection of ²¹⁰Po, ²¹⁰Bi and waste.

10, 20 or 30mL plastic luer lock syringes Liquid Scintillation System for measurement of ^{210}Bi and ^{210}Po .

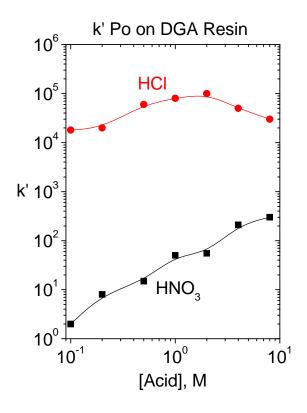
Gamma Spectrometry System for measurement of ²¹⁰Pb.

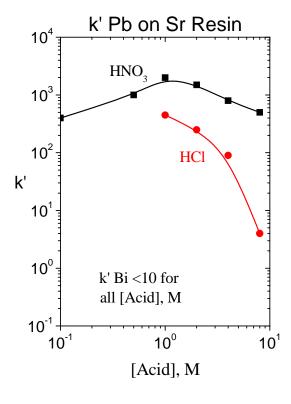
²¹⁰Pb/²¹⁰Bi/²¹⁰Po Separation

D


G

А


Sr


- Precondition stacked 2mL cartridges of DGA and Sr Resins with 10mL 2M HCI.
- (2) Dilute ²¹⁰Pb eluate from previous separation with 20mL DI H₂O. (If new ²¹⁰Pb source, dilute to 20mL with 2M HCI.)*
- (3) Load ²¹⁰Pb/²¹⁰Bi/²¹⁰Po in 30mL 2.67M HCI. (20mL 2M HCI). Collect ²¹⁰Bi.
- (4) Rinse DGA/Sr with 10mL 2M HCI. Collect ²¹⁰Bi.
- (5) Elute 10mL 8M HCl through DGA/Sr, collecting ²¹⁰Pb Source material. Save ²¹⁰Pb for future use.

- (6) Separate DGA/Sr.
- (7) Rinse DGA with 10mL 8M HNO₃. Discard as waste.
- (8) Strip ²¹⁰Po from UTEVA with 15mL 0.5M HNO₃.

*Adding 1mg of stable Pb to the ²¹⁰Pb source can help improve ²¹⁰Pb recovery from Sr Resin (do only once, not each time).

References

1) McAlister and Horwitz, "Chromatographic Generator Systems for the actinides and natural decay series elements," *Radiochimica Acta*, 99:1-9 (2011).