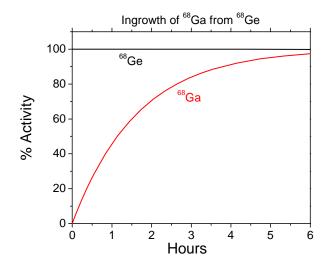


68Ga Generator

AN-1613-10

Summary of Method ⁶⁸Ga is a positron emitting radionuclide which has garnered interest for use in positron emission tomography (PET). ⁶⁸Ga ($t_{1/2}$ = 68 min) can be readily isolated from its parent ⁶⁸Ge ($t_{1/2}$ = 271 days), which is produced by cyclotron irradiation of gallium or zinc target material. Classic ⁶⁸Ga generators consist of ⁶⁸Ge adsorbed onto an inorganic exchanger, such as Al₂O₃, SnO₂ or TiO₂. The ⁶⁸Ga is then periodically eluted with 0.1-1.0M HCl or dilute EDTA. These generators are simple and robust, yielding 60-80% of 68Ga with minimal 68Ge breakthrough over many elutions. However, the classic generator can be limited by the relatively large volume of solution needed to elute the ⁶⁸Ga and by metal ion impurities arising from the inorganic substrate. An alternative generator system has been developed, in which the 68Ge source material is stored in dilute HCI. 68Ga is then selectively retained on cation exchange resin, while the 68Ge is remains in solution for future use. A small amount of rinsing of the cation exchange column, completes the ⁶⁸Ge source recovery. ⁶⁸Ga is then stripped from the cation exchange resin using a small volume of 4M HCl and adsorbed on a second cartridge of UTEVA resin. A small volume of rinse with 4M HCl provides additional decontamination from ⁶⁸Ge, and ⁶⁸Ga is recovered in a small volume of dilute HCI (0.05-0.5M HCI). The chemistry is robust and scalable. The separation has been demonstrated using 0.5 - 2mL columns/cartridges. Typical decay corrected yields of ⁶⁸Ga are 95 + 1% in 2-5mL of 0.1M HCl, with <10-7% ⁶⁸Ge impurity. Stable metal ion impurities are typically in the low parts per billion range. Operation of the generator has also been demonstrated with the Northstar Medical Radioistope automated generator system.

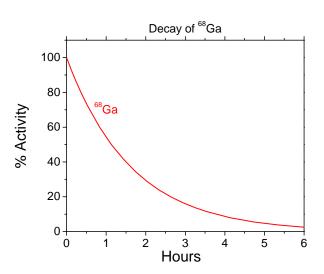

Reagents

UTEVA Resin Cartridges (Eichrom UT-R50-S)
Cation Exchange 2mL Cartridges (Eichrom C8-R50-H)

68Ge Source* Deionized Water

HCI

*Germanium chloride is relatively volatile and can be spread through the air. Care should be taken to minimize contamination of personnel and work spaces. Use of sealed systems for steps during separation is recommended.


Equipment

Glass vials for storage of ⁶⁸Ge source.

Glass or plastic vials/bottles for collection ⁶⁸Ga product and waste.

5, 10 or 20mL plastic luer lock syringes

Gamma spectroscopy system for measurement of ⁶⁸Ga. (The electron capture of ⁶⁸Ge can be measured by liquid scintillation or ⁶⁸Ge can be determined after decay/ingrowth of ⁶⁸Ga using the 511keV emission following positron annihilation.)

⁶⁸Ga/⁶⁸Ge Separation*

- (1) Clean 2mL 50Wx8 cartridge with:

 -20mL DI water

 -20mL 4M HCI

 -20mL 0.5M HCI

 (2) Load 68Ge/68Ga source in 10-20mL 0.5M HCI.
 68Ga is retained.
- (3) Rinse cartridge with 1mL 0.5M HCl. Collect in ⁶⁸Ge source vessel. Push remaining fluid to source vessel with air.
- (4) Seal ⁶⁸Ge source vessel and set aside for future use.
- (5) Rinse cartridge with 20mL 0.5M HCl. Dispose as waste.

(6) Precondition 2mL UTEVA cartridge with 5mL 4M HCI.

 \cap

5

0

W

X

8

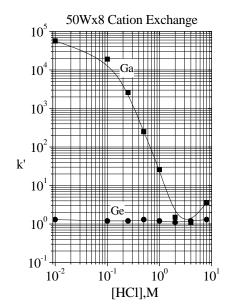
U T E

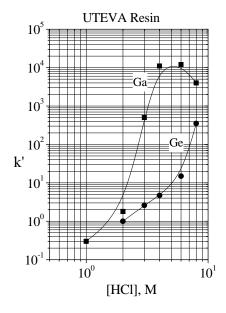
٧

Д

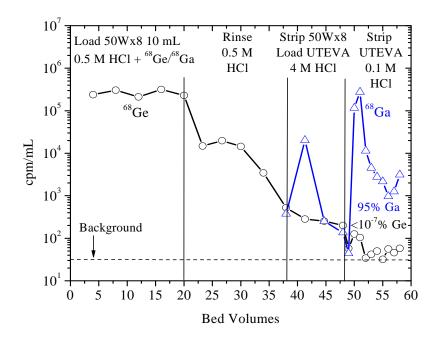
 \Box

U


T


E

٧


Α

- (7) Place 2mL UTEVA cartridge below 2mL 50Wx8 cartridge.
- (8) Strip ⁶⁸Ga from 50Wx8 onto UTEVA with 20mL 4M HCI. Dispose of eluate as waste.
- (9) Remove 50Wx8 cartridge.
- (10) Rinse UTEVA cartridge with 20mL 4M HCI.
- (11) Strip ⁶⁸Ga with 5-10mL 0.1M HCl.

The separation may also be performed using 0.5mL or 1mL columns/ cartridges and proportionally scaled eluate volumes to improve method speed and reduce losses from ⁶⁸Ga decay during separation.

References

1) McAlister and Horwitz, "Automated Two Column Generator Systems for Medical Radionuclides," *Applied Radiation and Isotopes*, 67:1985-1991 (2009).