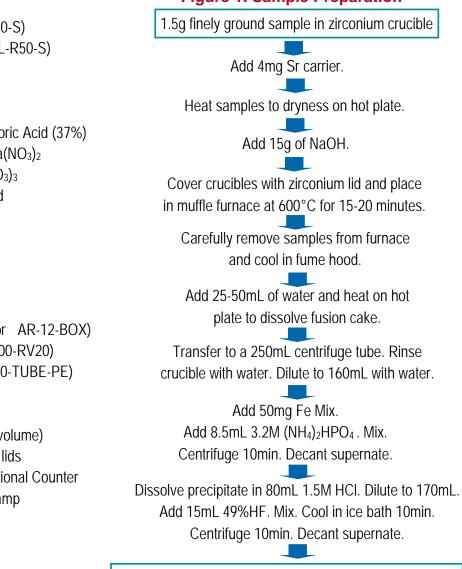
eichrom

Rapid Determination of ^{89/90}Sr in Limestone and Marble

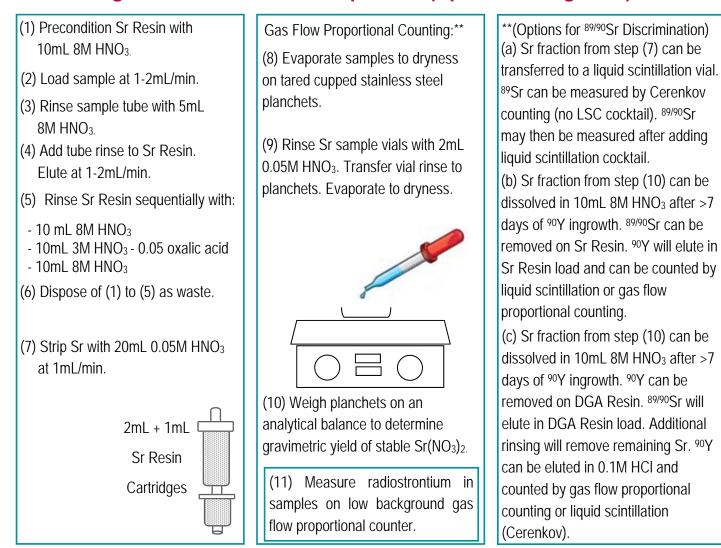

AN-1604-10

Summary of Method Strontium is separated and concentrated from 1.5 gram samples of limestone or marble. Samples are finely ground and fused in a zirconium crucible for 15 minutes at 600°C with 15 grams of sodium hydroxide. The fusion cake is dissolved in water, and strontium is concentrated and separated from the matrix using a calcium phosphate precipitate enhanced with iron. A secondary precipitation with calcium fluoride removes additional matrix (including silicates) and decreases the volume of precipitate. The calcium fluoride precipitate is dissolved with nitric acid-boric acid-aluminum nitrate to form the load solution. Strontium is separated from remaining matrix and potentially interfering radionuclides using stacked 2mL + 1mL Sr Resin cartridges. Radiostrontium is measured by gas flow proportional counting or liquid scintillation counting. Chemical yields of strontium are determined by gravimetric yield or by ICP-AES. Batches of 12-24 samples can be prepared for analysis in less than 8 hours. Simultaneous separation of actinides can be achieved by using the separation method in AN-1603.

Reagents

Sr Resin, 2mL Cartridges (Eichrom SR-R50-S) Sr Resin, 1mL Cartridges (Eichrom SR1ML-R50-S) Strontium Carrier (10mg/mL) Iron Carrier (50mg/mL Fe, as ferric nitrate) ⁹⁰Sr standard HF(49%) Nitric Acid (70%) Hydrochloric Acid (37%) Deionized Water 1.25M Ca(NO₃)₂ 3.2M (NH₄)₂HPO₄ 2M Al(NO₃)₃ Oxalic acid Boric acid Sodium Hydroxide

Figure 1. Sample Preparation



Equipment

Vacuum Box (Eichrom AR-24-BOX or AR-12-BOX) Cartridge Reservoir, 20mL (Eichrom AR-200-RV20) Inner Support Tubes-PE (Eichrom AR-1000-TUBE-PE) Yellow Outer Tips (Eichrom AR-1000-OT) 50mL and 250mL Centrifuge Tubes Cupped Stainless Steel Planchets (~5mL volume) 250mL Zirconium crucibles with zirconium lids Centrifuge Gas Flow Proportional Counter Muffle Furnace Hot Plate/Heat Lamp Analytical Balance Vacuum Pump

Dissolve precipitate in 7mL 3M HNO₃-0.25M Boric acid, 7.5mL 7M HNO₃, and 7mL 2M Al(NO₃)₃. Warm as needed.

Figure 2. Strontium Resin Separation (Optional ⁹⁰Y Ingrowth)*

*Actinides may also be measured by adding 2mL TEVA, TRU and DGA Resin cartridges above Sr Resin and following separation scheme in Eichrom Application note AN-1603.

**Additional discussion of ^{89/90}Sr separation and measurement options can be found in Eichrom Application Note AN-1624-10.

Method Performance

	% Sr tracer	⁹⁰ Sr Bq/g	⁹⁰ Sr Bq/g	
Sample	recovery	reference	measured	% bias
1	84.1	1.415	1.41	-0.1
2	84.8	1.415	1.42	0.4
3	84.8	1.415	1.38	-2.7
AVG	84.6 <u>+</u> 0.4		1.40 <u>+</u> 0.02	

References

1) Maxwell, Culligan, Hutchinson, Utsey, Sudowe, McAlister, "Rapid Method to Determine Actinides and Sr-89/90 in Limestone and Marble Samples," *J. Radioanal. Nucl. Chem.* accepted (2016). DOI 10.1007/s10967-016-4783-8