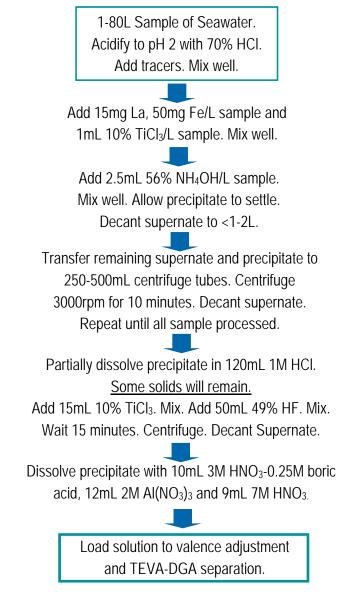
eichrom

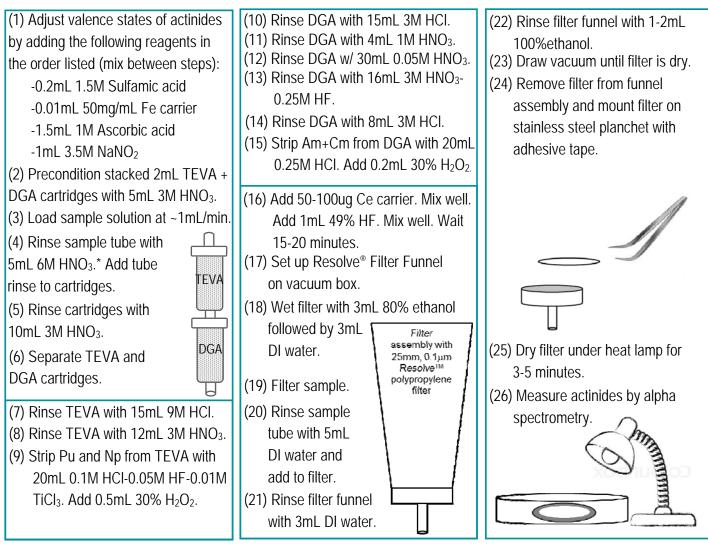
Rapid Determination of Pu, Am, and Cm in 80L Seawater Samples

AN-1424-10

Summary of Method Plutonium, Americium, and Curium are separated and concentrated from up to 80L samples of seawater with a hydrous titanium oxide precipitation, enhanced with lanthanum and ferric iron. A second precipitation with lanthanum fluoride removes additional matrix ions, and Pu and Am+Cm are separated from potentially interfering radionuclides in the sample using stacked 2mL cartridges of Eichrom TEVA and DGA Resins. Isotopic Pu and Am+Cm are measured by alpha spectrometry following cerium fluoride microprecipitation onto Eichrom Resolve[®] Filters. Chemical yields are determined by recovery of ²⁴³Am and ²⁴²Pu tracers. Recoveries of ²⁴³Am average 94 \pm 3%, while ²⁴²Pu average 86 \pm 4%. Measured values of ²³⁹Pu, ²⁴¹Am, and ²⁴⁴Cm typically agree to within 10% of reference values. A single operator can process batches of 12 samples through alpha source preparation in 6-8 hours. Alpha spectrometry count times will vary depending on desired detection limit and data quality objectives.


Reagents

TEVA Resin, 2mL Cartridges (Eichrom TE-R50-S) DGA Resin, 2mL Cartridges (Eichrom DN-R50-S) Ammonium Hydroxide (listed as 28% NH₃ or 56% NH₄OH) Nitric Acid (70%) Hydrochloric Acid (37%) Hydrofluoric Acid (49%) or Sodium Fluoride **Deionized Water** Iron Carrier (50mg/mL Fe, as ferric nitrate) Lanthanum and Cerium Carriers (1mg/mL) ²⁴³Am and ²⁴²Pu tracers 10% (w:w) TiCl₃ $H_2O_2(30\%)$ $2M AI(NO_3)_3$ Boric acid Sulfamic Acid Ascorbic Acid NaNO₂ **Denatured Ethanol**


Equipment

Vacuum Box (Eichrom AR-24-BOX or AR-12-BOX) Cartridge Reservoir, 20mL (Eichrom AR-200-RV20) Inner Support Tubes-PE (Eichrom AR-1000-TUBE-PE) Yellow Outer Tips (Eichrom AR-1000-OT) Resolve Filters in Funnel (Eichrom RF-DF25-25PP01) 50mL and 250-500mL Centrifuge Tubes Centrifuge Stainless Steel Planchets with adhesive tape Alpha Spectrometry System Analytical Balance Vacuum Pump Heat Lamp

Figure 1. Sample Preparation

Figure 2. TEVA-TRU Separation and Alpha Source Preparation

*Adding 50uL of 30% H₂O₂ to the tube rinse can improve Uranium recoveries and decontamination in Pu(Np) fractions.

Method Performance Pu, Am and Cm from Seawater							
				% Tracer	Analyte(mBq/L)	Analyte(mBq/L)	
Analyte	Volume, L	Replicates	Tracer	Recovery	Reference	Measured	% Bias
²³⁹ Pu	16	2	²⁴² Pu	90 <u>+</u> 1	4.22	4.67 <u>+</u> 0.05	11
²³⁹ Pu	25	2	²⁴² Pu	84.6 <u>+</u> 0.2	3.22	3.3 <u>+</u> 0.1	2.5
²³⁹ Pu	40	2	²⁴² Pu	86 <u>+</u> 2	0.81	0.82 <u>+</u> 0.02	1.2
²³⁹ Pu	80	2	²⁴² Pu	85 <u>+</u> 5	0.40	0.37 <u>+</u> 0.01	-7.5
²⁴¹ Am	16	2	²⁴³ Am	95 <u>+</u> 4	3.31	3.1 <u>+</u> 0.1	-6.3
²⁴¹ Am	25	2	²⁴³ Am	93.1 <u>+</u> 0.1	2.12	1.9 <u>+</u> 0.1	-10
²⁴¹ Am	40	2	²⁴³ Am	96 <u>+</u> 2	0.53	0.51 <u>+</u> 0.02	-3.8
²⁴¹ Am	80	2	²⁴³ Am	93 <u>+</u> 4	0.27	0.25 <u>+</u> 0.01	-7.4
²⁴⁴ Cm	16	2	²⁴³ Am	95 <u>+</u> 4	2.16	2.1 <u>+</u> 0.2	-2.8
²⁴⁴ Cm	25	2	²⁴³ Am	93.1 <u>+</u> 0.1	1.35	1.3 <u>+</u> 0.1	-3.7
²⁴⁴ Cm	40	2	²⁴³ Am	96 <u>+</u> 2	0.85	0.78 <u>+</u> 0.04	-8.2
²⁴⁴ Cm	80	2	²⁴³ Am	93 <u>+</u> 4	0.42	0.41 <u>+</u> 0.01	-2.3

ethod Performance Pu	, Am and Cm from Seawater

16 hour count times

References

1) Sherrod L. Maxwell, Brian K. Culligan, Jay B. Hutchinson, Robin C. Utsey, Daniel R. McAlister, "Rapid determination of actinides in seawater samples," J. Radioanal. Nucl. Chem., 300(3), 1175-1189 (2014).