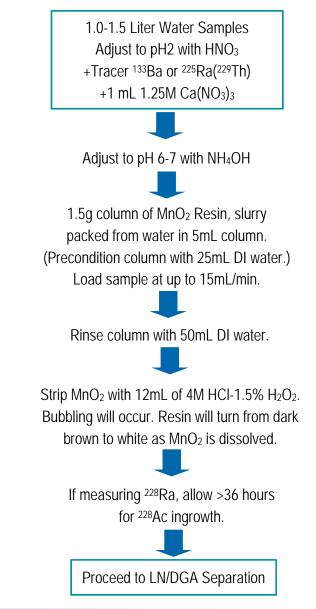
eichrom

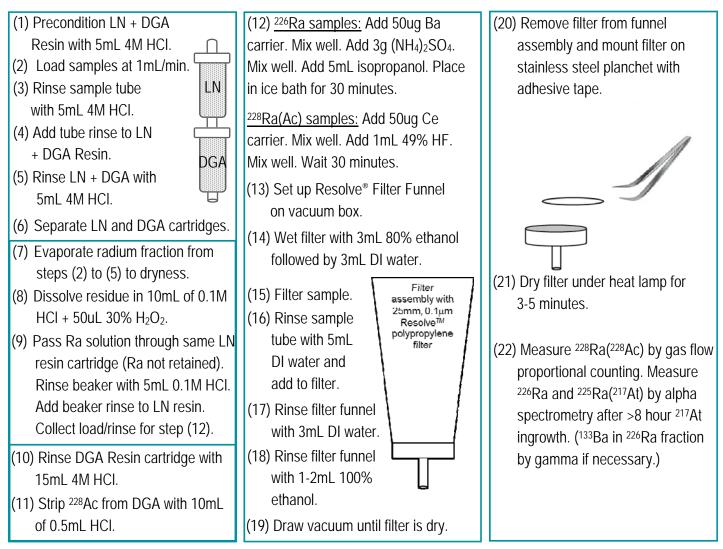
Rapid Determination of ^{226/228}Ra in Water Samples

AN-1417-10

Summary of Method Ra isotopes are separated and measured from 1.0-1.5 liter samples of terrestrial waters. Radium is concentrated from samples on MnO₂ Resin. After a >36 hour ingrowth period for ²²⁸Ac from ²²⁸Ra, radium and ²²⁸Ac are separated from matrix ions and potentially interfering radionuclides using stacked 2mL cartridges of Eichrom LN and DGA Resins. ²²⁸Ac is prepared for gas flow proportional counting using a cerium fluoride microprecipitation onto Eichrom Resolve[®] Filters. ²²⁶Ra is prepared for alpha spectrometry using a barium sulfate microprecipitation onto Eichrom Resolve[®] Filters. Chemical yield of radium is determined by adding either a ¹³³Ba or ²²⁵Ra(²²⁹Th) tracer. A single operator can process batches of 12-24 samples in 4-5 hours. Results for ²²⁶Ra and ²²⁸Ra can be obtained in 48 hours, including >36 hour ingrowth time for ²²⁸Ac. Results for ²²⁶Ra with ²²⁵Ra(²²⁹Th) a minimum 8 hour ingrowth time for the ²¹⁷At daughter of ²²⁵Ra is required.


Reagents

 $\begin{array}{ll} \mathsf{MnO}_2 \ \mathsf{Resin} \ (\mathsf{Eichrom} \ \mathsf{MN} \cdot \mathsf{B100} \cdot \mathsf{A}) \\ \mathsf{LN} \ \mathsf{Resin} \ (\mathsf{Eichrom} \ \mathsf{LN} \cdot \mathsf{R50} \cdot \mathsf{S}) \\ \mathsf{DGA} \ \mathsf{Resin}, \ \mathsf{Normal} \ \mathsf{2mL} \ \mathsf{Cartridges} \ (\mathsf{Eichrom} \ \mathsf{DN} \cdot \mathsf{R50} \cdot \mathsf{S}) \\ \mathsf{Ammonium} \ \mathsf{Hydroxide} \ (\mathsf{listed} \ \mathsf{as} \ \mathsf{28\%} \ \mathsf{NH}_3 \ \mathsf{or} \ \mathsf{56\%} \ \mathsf{NH}_4 \mathsf{OH}) \\ \ ^{133}\mathsf{Ba} \ \mathsf{or} \ ^{225}\mathsf{Ra} (^{229}\mathsf{Th}) \ \mathsf{Tracer} \\ \mathsf{Barium} \ \mathsf{and} \ \mathsf{Cerium} \ \mathsf{Carriers} \ (\mathsf{1mg/mL}) \\ \mathsf{Nitric} \ \mathsf{Acid} \ (70\%) \\ \mathsf{Hydrofluoric} \ \mathsf{Acid} \ (50\%) \\ \mathsf{Hydrogen} \ \mathsf{Peroxide} \ (30\%) \\ \mathsf{1.25M} \ \mathsf{Ca}(\mathsf{NO}_3)_2 \\ \mathsf{Denatured} \ \mathsf{Ethanol} \\ \mathsf{Denotured} \ \mathsf{Ethanol} \\ \mathsf{Deionized} \ \mathsf{Water} \\ \end{array}$


Equipment

Plastic Chromatography Column (Eichrom AC-50E-5M) Column Extension Funnel (Eichrom AC-20X-20M) Vacuum Box (Eichrom AR-24-BOX or AR-12-BOX) Cartridge Reservoir, 20mL (Eichrom AR-200-RV20) Inner Support Tubes-PE (Eichrom AR-1000-TUBE-PE) Yellow Outer Tips (Eichrom AR-1000-OT) Resolve Filter in Disposable Funnel (Eichrom RF-DF-25-25PP01) 50mL Centrifuge Tubes Stainless Steel Planchets with Adhesive Tape Alpha Spectroscopy System Gamma Spectroscopy System (if ¹³³Ba tracer used) Low Background Gas Flow Proportional Counter 150mL Glass beakers Vacuum Pump Hot Plate Heat Lamp

Figure 1. Sample Preparation

Figure 2. LN-DGA Separation and Alpha Source Preparation

Method Performance ^{226/228} Ra in Water				
Volume		¹³³ Ba Tracer		
Liters	Replicates	% Recovery	²²⁶ Ra	²²⁸ Ra
1.5	3	101 <u>+</u> 5	103 <u>+</u> 1	103 <u>+</u> 7
1.0	5	95 <u>+</u> 4	104 <u>+</u> 1	102 <u>+</u> 8
	Volume Liters 1.5	VolumeLitersReplicates1.53	Volume ¹³³ Ba Tracer Liters Replicates % Recovery 1.5 3 101 ± 5	Volume ¹³³ Ba Tracer % Recovery Liters Replicates % Recovery ²²⁶ Ra 1.5 3 101 ± 5 103 ± 1

1040pCi ¹³³Ba, 5.0pCi ²²⁶Ra, 20pCi ²²⁸Ra

References

1) Sherrod L. Maxwell, "Rapid Method for ²²⁶Ra and ²²⁸Ra in Water Samples," *J. Radioanal. Nucl. Chem.*, 270(3), 651-655 (2006).