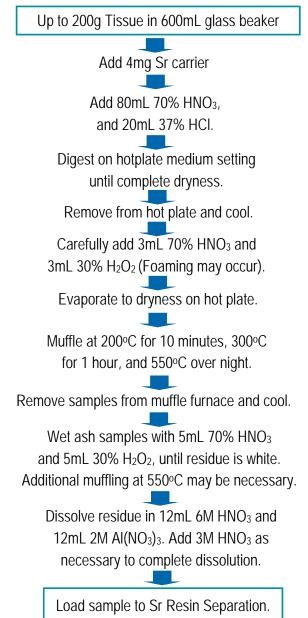
eichrom

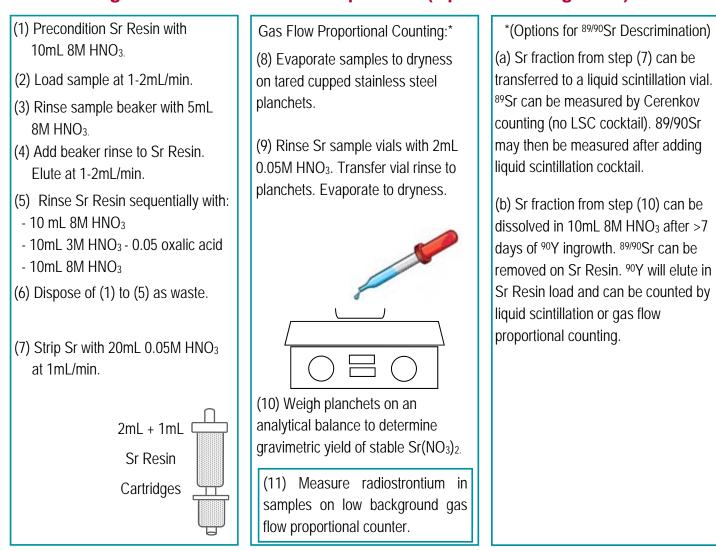
Rapid Determination of Sr in Animal Tissue Samples

AN-1407-10

Summary of Method Strontium is separated and concentrated from up to 200g tissue samples. Samples are digested with aqua regia, wet ashed with HNO₃-H₂O₂ and muffled over night at 550°C to destroy organic content. Strontium is separated from matrix impurities and potentially interfering radionuclides in the sample using stacked 2mL and 1mL cartridges of Eichrom Sr Resin. Radiostrontium is measured on a low background gas flow proportional counter or liquid scintillation counter. Chemical yield of strontium is determined by gravimetric recovery of stable strontium or ICP-AES measurement. Average chemical recoveries of strontium are 74-89% for 200g samples of catfish, bass, red drum, mullet, sea trout. Average strontium recoveries for 100 gram samples of deer, hog, bream and shellfish are 83-96%. A single operator can complete the sample preparation, including 16 hours for muffling, for 12-24 samples in less than 24 hours.


Reagents

Sr Resin, 2mL Cartridges (Eichrom SR-R50-S) Sr Resin, 1mL Cartridges (Eichrom SR1ML-R50-S) Nitric Acid (70%) Hydrochloric Acid (37%) Hydrogen Peroxide (30%) Deionized Water Strontium Carrier (10mg/mL) Aluminum Nitrate, Nonahydrate Sr-90 standard Oxalic acid


Equipment

Vacuum Box (Eichrom AR-24-BOX or AR-12-BOX) Cartridge Reservoir, 20mL (Eichrom AR-200-RV20) Inner Support Tubes-PE (Eichrom AR-1000-TUBE-PE) Yellow Outer Tips (Eichrom AR-1000-OT) Cupped Stainless Steel Planchets (~5mL volume) Gas Flow Proportional Counter Muffle Furnace Hot Plate Analytical Balance 600mL Glass Beakers Vacuum Pump

Figure 1. Sample Preparation

Figure 2. Strontium Resin Separation (Optional ⁹⁰Y Ingrowth)

Actinides may also be measured by adding 2mL TEVA, TRU and DGA cartridges above Sr Resin and following the separation scheme in Eichrom application note AN-1408, "Rapid Determination of Actinides in Animal Tissue Samples."

Sr Carrier Recovery for 100-200g Tissue Samples							
			% Recovery				% Recovery
Sample	grams	replicate	Sr carrier	Sample	grams	replicate	Sr carrier
Beef	100	6	96.3 <u>+</u> 0.5	Fish-Mullet	200	6	85.6 <u>+</u> 17
Deer	100	59	83.4 <u>+</u> 3.5	Fish-Red Fish	200	6	77.7 <u>+</u> 21
Fish-Bass	200	72	89.0 <u>+</u> 16	Fish-Sea Trout	200	6	74.4 <u>+</u> 25
Fish-Bream	100	57	91.7 <u>+</u> 10	Hog	100	17	86.0 <u>+</u> 7.1
Fish-Catfish	200	69	89.4 + 17	Shellfish	100	5	97.5 + 0.9

References

1) Sherrod L. Maxwell, Donald M. Faison, "Rapid column extraction method for actinides and strontium in fish and other animal tissue samples," J. Radioanal. Nucl. Chem., 275(3), 605-612 (2007).