What Does Eichrom’s Quality Control System Do For You?

Sarah Tejchma, Joel Williamson, Jill Bryant, Terence O’Brien, Lawrence Jassin, E. Philip Horwitz, Daniel McAlister

Eichrom Technologies, LLC

56th Annual Radiobioassay & Radiochemical Measurement Conference
October 25-28, 2010
Outline

• QC Goals
• Standard Testing
 – Finished Product Testing
 – Individual Constituent Testing
• QC Progression of a New Resin
• System Improvements
• Upcoming QC Upgrades
Eichrom’s
Key QC Goals

1. Ship at least 98% of line items by the customer’s required delivery date.
 - 97% (To Date)

2. Implement one or more improvements in product quality, measurement systems of product quality, or efficiency quarterly. (2010 highlights)
 - Shelf Life Study Completed for DGA, Sr, TRU, TEVA, & UTEVA
 - Reformulation of Tritium Columns
Finished Product Testing

• Dry Weight Distribution Ratio (D_w)

 – Since the formation of Eichrom, an essential feature of our quality control system was the measurement of D_w for each batch of new resin manufactured.

 – radioactive or Stable Elements
Dry Weight Distribution Ratio

\[D_w = \frac{A_0 - A_s}{w(\text{g})} \div \frac{A_s}{v(\text{mL})} \]
Finished Product Testing (cont.)

Column Elutions

- DGA
 Am & U

- Sr
 Ba, Ca, Sr, & Y

- TEVA
 Pu & Th

- TRU
 Am & Pu

- UTEVA
 Th & U
Individual Constituent Testing

- Extractants & Diluents
 - Solvent Extraction
 - CMPO/TBP (TRU Resin)
 - Aliquat-336 (TEVA Resin)
 - DAAP (UTEVA Resin)
Individual Constituent Testing (cont.)

- Support Resin
 - Flow Rate
 - A-Grade Specs (0.6-0.8mL/min.)
 - Particle Characterization
 - New Lot
QC Progression of a New Resin

• Development of the Resin

• QC Testing Based on Application of Resin

• Collaborating w/ Input from Client
 – Ensuring the resin will meet their needs.

• Development of a Standard QC

• Setting of Performance Specifications
QC Improvements

- Constantly Striving to Deliver the Best Product
- New Material
- Change of Material Supplier
- Inconsistent Data
New Material

• Resolve Filters

 – Supplier Changed Manufacturing Process
 – Did Not Meet Needs
 – Designed a rugged enough QC to differentiate between materials.
 – Finally found a material that was comparable.
New Material

- Tritium Columns
 - Supply of 100-200 mesh Diphonix was low, almost non-existent.
 - Batch Uptakes
 - Performance Directly Related to Flow Rate
 - 50-100 mesh Diphonix Did Not Perform Well
 - Mixed Particle Diphonix + S-Grade Pre-Filter
 - Reformulation/Collaborations with Clients => Better Product (Better Results/Faster)
Supplier Change

• CMPO (TRU Resin)
 – New Supplier After 15+ Years
 – Ensure Quality/Purity
 – Th-227 Column Elution
 • Extremely High Specific Activity
Inconsistent Data

- Sample From Larry’s Trunk
- Matt O’Hara Collaboration
 - Inconsistent Results Using DGA
- Original QC: Column Elution w/Eu-152
- New QC: Column Elution w/ Am-241 & U-233
- Inconsistency Observed w/ U-233 => Purifying Extractant
 - Consistent Resin

Load: 3M HNO₃ U Strip: 0.5M HNO₃ Am Strip: 0.5M HCl
Upcoming QC Upgrades

- LN QC Procedure
- Anion Procedure
 - Increase Ruggedness
 - New Needs
 - Client
 - Field Changes
 - Interferences
Conclusions

- Standard testing is done to ensure the consistency of a product before the end user receives it.
- Eichrom always has open ears. If there is a comment or concern, please share.
- Specifications associated with the QC performed on the major resins are in the handout.
- CoAs Online
Standard QC Specifications

<table>
<thead>
<tr>
<th>DGA-Normal Resin</th>
<th>233Am Strip</th>
<th>241Am Breakthrough</th>
<th>233U Strip</th>
<th>238U Breakthrough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (%)</td>
<td>97</td>
<td>1</td>
<td>97</td>
<td>1</td>
</tr>
<tr>
<td>Minimum (%)</td>
<td>95</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Maximum (%)</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>138Ba Resin</td>
<td>137Ba Strip</td>
<td>137Ba Breakthrough</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (%)</td>
<td>95</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum (%)</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum (%)</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr Resin</td>
<td>Ba Breakthrough</td>
<td>Ca Breakthrough</td>
<td>Sr Strip</td>
<td>Y Breakthrough</td>
</tr>
<tr>
<td>Mean (A-Grade%/S-Grade%)</td>
<td>0.5/0.25</td>
<td>0.25/0.15</td>
<td>85/85</td>
<td>0.25/0.15</td>
</tr>
<tr>
<td>Minimum (A-Grade%/S-Grade%)</td>
<td>80/80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum (A-Grade%/S-Grade%)</td>
<td>1.5/0.5</td>
<td>0.75/0.25</td>
<td></td>
<td>0.75/0.25</td>
</tr>
<tr>
<td>TEVA Resin</td>
<td>239Pu Strip</td>
<td>239Pu Breakthrough</td>
<td>232Th Strip</td>
<td>236Th Breakthrough</td>
</tr>
<tr>
<td>Mean (%)</td>
<td>90</td>
<td>1</td>
<td>93</td>
<td>2</td>
</tr>
<tr>
<td>Minimum (%)</td>
<td>85</td>
<td></td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Maximum (%)</td>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TRU Resin</td>
<td>241Am Strip</td>
<td>241Am Breakthrough</td>
<td>235Pu Strip</td>
<td>235Pu Breakthrough</td>
</tr>
<tr>
<td>Mean (%)</td>
<td>95</td>
<td>1</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>Minimum (%)</td>
<td>90</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Maximum (%)</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>UTEVA Resin</td>
<td>233Th Strip</td>
<td>233Th Breakthrough</td>
<td>232U Strip</td>
<td>238U Breakthrough</td>
</tr>
<tr>
<td>Mean (%)</td>
<td>90</td>
<td>0.5</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>Minimum (%)</td>
<td>85</td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Maximum (%)</td>
<td></td>
<td>0.7</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Online: Certificate of Analysis

LATEST NEWS: Nuclear Power Outfitters Featured Product: "T-Flex" Tungsten Shielding System

Technical Info
- View Application Notes
- View Methods
- Search Bibliography

Order Online
Free ground shipping now available for all orders placed online. Click Here

Resources
- MSDS
- Certificates of Analysis
- ISO 9000
- About Us
- Contact Us

Home | Radiochemistry Products | Dioxin Test Kits | Ion Exchange Resins | Contact Us | Site Map
© 2010 Eichrom Technologies, Inc. | A GCI Company
WARNING:

BE CAREFUL WHAT YOU GET OUT OF LARRY’S TRUNK!