

GROSS ALPHA DETERMINATION IN DRINKING WATER USING A HIGHLY SPECIFIC RESIN AND LSC

S. HAPPEL^{*a}, P. LETESSIER^a, J.H. EIKENBERG^c, A.H. THAKKAR^b, E.P. HORWITZ^b

^aEICHROM EUROPE - Parc de Lormandière - Bât. C - Rue Maryse Bastié - Campus de Ker Lann - 35170 Bruz – France

^bEICHROM TECHNOLOGIES - 8205 S. Cass Ave / Suite 106 - Darien, IL 60561 - USA

^cPAUL SCHERRER INSTITUTE - Villigen PSI - 5232 - Switzerland

Introduction

- Drinking Water Directive 98/83/EC
- Planchet Evaporation
- Resin / LSC Approach
 - Extraction
 - Interferences
 - LS counting
- ➤ Gross alpha protocol
- \succ Real samples
- Conclusions / Next steps

Drinking Water Directive 98/83/EC

- Covers water intended for human consumption
 - Water for drinking, food preparation and other domestic use
 - Implementation by latest 25 December 2003
- Radiological aspects implemented
 - Recommended by WHO guidelines
 - $H-3 < 100 \text{ Bq } \text{L}^{-1}$
 - Total indicative dose < 0.1 mSv a⁻¹ (H-3,K-40, Rn-222 & daughters excluded)

Screening approach (guideline values, WHO):

- 0.1 Bq L⁻¹ gross alpha activity
- 1 Bq L⁻¹ gross beta activity
- No further action if determined activities are below

Planchet Evaporation

- Commonly used method
 - Evaporation of 100 1000 ml water on 50 200 mm Ø planchets
 - Gas proportional counting
- ≻ Pro:
 - Number of samples counted simultaneously
 - β - α -spill-over
- > Drawbacks:
 - Evaporation time
 - Dissolved solids (self absorption correction)
 - Inhomogeneous distribution of solids => precision
 - Detection efficiency / counting time

Resin / LSC Approach

≻Resin approach

- Large number of samples prepared simultaneously
- Batch extraction
- Matrix removal
- Resin and filter are dried and mixed with scintillation cocktail
 - Samples with very similar composition / SQP(E) value
 - No extensive quench correction

Resin / LSC Approach

$\geq \alpha$ -/ β -discrimination LS-counting

- High detection efficiency
- Low background count rates
- Shorter counting times

>Used in routine in The Netherlands (Actinide Resin[®])

- Drinking and waste water
- Drawback: Ra uptake interfered by Ca (>100 ppm)

- ➢ pH 1: no Am uptake
- ➢ pH 2: overall good extraction
- > No further improvement by shaking for 4 h

Extraction at pH 2

- TracerMix: equal activities of Ra, U, Pu, Am
- ➢ pH 2: overall good extraction
- > 30 min shaking time sufficient

Ca-Interference

➢ U, Pu, Am, Np and Ra uptake high for varying Ca contents (>90 − 100 %)

➤ Ra-uptake is good (> 90 %) even at high Ca contents (200 ppm)

• Ca content of European Drinking water 30 – 150 ppm

K and Fe interferences

➢ Only slight interference even for 500 ppm K

- Drinking water content usually < 30 ppm K
- → High Fe(III) amounts (100 ppm) interfere with Pu uptake
- ➢ Fe(II) shows no interference
 - 0.2 ppm Fe allowed (Drinking Water Directive 98/83/EC)

Carbonate and Sulphate interferences

- Carbonate and Sulphate interfere when present in high concentrations (e.g. carbonate > 2000 ppm)
- ➢ interference is increased by large amounts of Ca (350 ppm)
- Carbonate content of drinking water usually < 1000 ppm
- Sulphate content restricted to 240 ppm (Drinking Water Directive 98/83/EC)

Resin approach

- Extraction near quantitative
 - Actinides and Ra
 - ➢ pH 2 (commonly used)
 - ➢ 30 min shaking time
- ➢ 60 samples of different chemical composition
 - Chemical Yield (mean): 0,9
 - ➤ Reproducibility $s_R = 5 \%$ (k=1)
 - ➤ Repeatability $s_r = 5 \%$ (k=1)
- > Interferences
 - > Ca, Fe(III), carbonate and sulphate do not interfere
- ≻Resin approach suited

LS-counting

α-/β-discrimination LS-counting (1220 Quantulus)
18 mL UltimaGold AB, dried Resin and filter (Am-241, Sr-90)
Good reproducibility of samples SQP(E) value (800 +/- 10)

- ➤ High PSA values (>200) best suited
 - Low β-spill-over
 - α detection efficiency still high (60 80 %)

LS-counting

→ High PSA values (>200) best suited

- FoM $(\epsilon_{\alpha}^2/\epsilon_{\beta f})$ values > 100
- Good detection limits
 - 40 mBq L⁻¹ (< 4 h, 100 mL sample)
 - 90 mBq L⁻¹ (< 90 min, 100 mL sample)

Calculations

Gleichung 1: Gesamt-Alpha-Aktivitätskonzentration, $\alpha - \beta$ -LSC in Bq.L⁻¹

$$\frac{U_{c_{A_{\alpha}}}}{c_{A_{\alpha}}} = k \cdot \left[\left(\frac{\sqrt{sR_{\alpha}^{2} + \left(\frac{s\varepsilon_{\beta f}}{\varepsilon_{\beta f}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{sR_{\beta}}{R_{\beta}} \right) \cdot \frac{\varepsilon_{\beta f}R_{\beta}}{\varepsilon_{\beta}}}{\left(R_{\alpha} - \left(\frac{\varepsilon_{\beta f}R_{\beta}}{\varepsilon_{\beta}} \right) \right)} \right]^{2} + \left(\frac{\sqrt{s\varepsilon_{\alpha}^{2} + \left(\left(\frac{s\varepsilon_{\beta f}}{\varepsilon_{\beta f}} + \frac{s\varepsilon_{\alpha}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\alpha}}{\varepsilon_{\alpha}} \right) \cdot \frac{\varepsilon_{\beta f}\varepsilon_{\alpha f}}{\varepsilon_{\beta}} \right)}{\left(\varepsilon_{\alpha} - \left(\frac{\varepsilon_{\beta f}\varepsilon_{\alpha f}}{\varepsilon_{\beta}} \right) \right)} \right]^{2} + \left(\frac{\sqrt{s\varepsilon_{\alpha}^{2} + \left(\left(\frac{s\varepsilon_{\beta f}}{\varepsilon_{\beta f}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\alpha}} + \frac{s\varepsilon_{\alpha}}{\varepsilon_{\beta}} \right) \cdot \frac{\varepsilon_{\beta f}\varepsilon_{\alpha f}}{\varepsilon_{\beta}} \right)}{\left(\varepsilon_{\alpha} - \left(\frac{\varepsilon_{\beta f}\varepsilon_{\alpha f}}{\varepsilon_{\beta}} \right) \right)} \right)^{2} + \left(\frac{u_{\nu}}{\nu} \right)^{2} + \left(\frac{s\varepsilon_{\beta f}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} \right)}{\left(\varepsilon_{\alpha} - \left(\frac{\varepsilon_{\beta f}\varepsilon_{\alpha f}}{\varepsilon_{\beta}} \right) \right)} \right)^{2} + \left(\frac{u_{\nu}}{\nu} \right)^{2} + \left(\frac{s\varepsilon_{\beta f}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} \right)}{\left(\varepsilon_{\alpha} - \left(\frac{\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} \right) \right)} \right)^{2} + \left(\frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} \right)}{\left(\varepsilon_{\alpha} - \left(\frac{\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} \right) \right)} \right)^{2} + \left(\frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} \right)}{\left(\varepsilon_{\beta} - \frac{s\varepsilon_{\beta}}{\varepsilon_{\beta}} + \frac{s\varepsilon_{\beta}}{\varepsilon$$

Gleichung 2: Unsicherheit Gesamt-Alpha-Aktivitätskonzentration,α-/β-LSC in Bq.L⁻¹

$$c^*_{\min} = \left(k_{1-\alpha} \cdot \sqrt{\left(\varepsilon_{\beta f} R_{\beta} + R_{\alpha,0}\right) \cdot \left(\frac{1}{t_0} + \frac{1}{t_m}\right)} + \frac{1}{4} \left(k_{1-\alpha} + k_{1-\beta}\right)^2 \left(\frac{1}{t_0} + \frac{1}{t_m}\right)\right)$$

Gleichung 3: Erkennungsgrenze c^{*}_{min} Gesamt-Alpha-Aktivitätskonzentration, α-/β-LSC in Bq.L⁻¹

$$c_{\min} = \frac{1}{\varepsilon_{\alpha} \cdot V \cdot 60 \cdot R} \left[\left(k_{1-\alpha} + k_{1-\beta} \right) \sqrt{\left(\varepsilon_{\beta f} R_{\beta} + R_{\alpha,0} \right) \cdot \left(\frac{1}{t_0} + \frac{1}{t_m} \right)} + \frac{1}{4} \left(k_{1-\alpha} + k_{1-\beta} \right)^2 \left(\frac{1}{t_0} + \frac{1}{t_m} \right) \right]$$

Gleichung 4: Nachweisgrenze c_{mn} Gesamt-Alpha-Aktivitätskonzentration, α-/β-LSC in Bq.L⁻¹

 ε_{α} : Korrekt klassifizierte α -particles; $\varepsilon_{\alpha t}$: Inkorrekt klassifizierte α -particles; ε_{β} : Korrekt klassifizierte β -particles; $\varepsilon_{\beta f}$: Inkorrekt klassifizierte; Z_{α} / Z_{β} : Alpha-/Beta-Fenster netto Zählrate; $k_{1-\alpha}$ and $k_{1-\beta}$: Quantile der Normalverteilung (3,0 and 1,645), Z_0 : Untergrundzählrate, t_0 and t_m : Messzeit Untergrund/Probe.

Gross alpha protocol

Real samples

table 1: determined and reference values, gross-alpha determination, real samples

Probe	reference value / Bq L ⁻¹	determined value / Bq L ⁻¹	d/r / %
Marburg	404 +/- 11 +	408 +/- 18	100,9 +/- 4,5 %
Dueseldorf	414 +/- 11 +	408 +/- 19	98,6 +/- 4,5 %
Kaiserquelle Aachen	401 +/- 11 +	391 +/- 18	97,5 +/- 4,4 %
BfS 3/03 MW	4,32 +/-0,11 *	3,94 +/- 0,14	91,2 +/- 4,0 %
BfS 3/03 RW	7,72 +/-0,27 *	7,16 +/- 0,39	92,7 +/- 4,4 %

+ TracerMix-activity added

* obtained using established evaporation protocol

➢ Good recoveries for spiked drinking water samples

Good agreement between LSC and evaporation results

Conclusions

- > Uptake of Actinides is good; high Ca contents do not interfere
- Resin shows high Ra-uptake (> 95%) for low Ca-content; for high Ca-contents (200 ppm) uptake is > 90 %
- Fe(III), carbonate and sulphate do not interfere
 (except when present in contents not found or not allowed in water)
 Direct or /0 discrimination LS counting of dried regime
- > Direct α -/ β -discrimination LS-counting of dried resin
 - good reproducibility of SQP(E)
 - LoD of 40 mBq L⁻¹ in less than 4 h counting time
 - LoD of 90 mBq L⁻¹ in less than 90 min counting time
- Good precision
- > Quick results
- First test with real samples showed good results

Next steps

Improvement of LS-counting conditions

Further evaluation with intercomparison/reference samples

CETAMA Intercomparison

- Comparison between Resin vs. Planchet Evaporation
- Mineralwater

> Seawater