

We Put Science To Work

Rapid Determination of Radiostrontium in Large Soil Samples

S. L. Maxwell and B. K. Culligan Savannah River National Laboratory October 31, 2012

Rapid Radiostrontium analyses

- Important assay after Fukushima Daiichi accident
- SRNL support
 - 1.5g soil-fusion
 - 10g acid leach –lower MDA
- Larger aliquots may be needed to assess low level activities/isotope ratios
- Could we analyze even larger soil aliquots for Sr isotopes?

Fukushima Soil Samples

Received samples in early April, 2011 Via DOE FRMAC

- Was it ok to plant rice?
 - Needed very rapid results
- Rapid approval of USDA permit for foreign soil
- Gamma, Sr-89/90, actinides
- Higher than normal activity samples
 - Cs-134/137 gamma measurements from Japan
 - Rad Con and facility support
 - DOE RAP (Radiological Assistance Program) team
 - Responds to US radiological emergencies

3

Rapid Sr-89, Sr-90 Sample Fusion Method for Soil

Sr-89/90 Fukushima Soil Work

SOIL Avg. Sr Carrier			% Sr-90 Re	% Sr-90 Recovery		
Batch	Ν	% Recovery	+/- 1 sigma	LCS	MS	MDC (pCi/g)
1	14	78.1	9.4	115.5	98.8	1
2	21	71.5	8.5	100.5	89.1	0.9
3	22	74.2	5.1	100.3	94.5	0.8
4	22	79.7	5.3	106.4	98.5	0.7
5	22	82.1	8.8	105.2	91.7	0.7
6	12	74.1	5.8	106.3	107.1	0.8
7	11	77.5	3.8	91.3	109.9	0.4
8	7	77.1	7.6	90.2	108.9	0.05
9	11	86.1	8.4	105.4	94.9	0.05
10	10	71.9	12.5	99.7	97.4	0.05
11	10	76.6	11.7	94.3	94.3	0.04
Avg.		77.2		101.4	98.6	

Sr-89 and Sr-90 in soil

- What about very large soil aliquots?
- Is that even possible?
- Soil matrix interferences
- Literature?

Literature

- Number of methods reported in literature that use ion exchange/extraction chromatography to determine radiostrontium in soil
 - Not so rapid...
- R. Bojanowski and D. Knapinska- Skiba, Determination of low-level ⁹⁰Sr in environmental samples: a novel approach to the classical method, J. Radioanal. Nucl.Chem, VoL 138, No. 2 (1990), 207
 - Fuming nitric acid presents handling difficulties and can be very tedious and timeconsuming

Literature, continued

- J. Wang, I. Chen, and J. Chiu, Sequential isotopic determination of plutonium, thorium, americium, strontium and uranium in environmental and bioassay samples, Applied Radiation and Isotopes, 61 (2004.), 299
 - A large anion resin column (Dowex 1x8) was used to collect and separate Pu and Th. Rinse fractions from the anion resin were treated further and processed individually for Am, U and Sr
 - Several sequential precipitations were carried out. An oxalate precipitation was performed at pH 4.2 on the anion resin rinse solution followed by a Sr Resin separation.
 - Strontium was counted using Čerenkov counting, while all actinide fractions were electrodeposited for counting by alpha spectrometry.
 - Chemical recoveries using this method on NRIP (National Institute of Standards and Technology [NIST] Radiochemistry Intercomparison Program) soil for strontium were 63-77%.

Literature, continued

- P. Tavčar, R. Jakopič, and L. Benedik, Sequential Determination of ²⁴¹Am, ²³⁷Np, Pu Radioisotopes and ⁹⁰Sr in Soil and Sediment Samples, Acta. Chim.Slov. 52 (2005), 60
 - Reported a method to determine actinides in soil. Soil and sediment samples up to 10g were leached using strong nitric acid, filtration, evaporation, and the residue was redissolved in 1M HNO₃.
 - The acid concentration was increased to 8M HNO₃ and the samples were loaded onto Dowex 1x8 resin.
 - Sr was collected from the anion exchange eluent solution using calcium oxalate and the Sr was then separated using Sr Resin. Very large elution volumes were used in this method, including 100 ml of water to elute Sr from Sr Resin.
 - The Sr was precipitated as an oxalate, redissolved and measured using liquid scintillation counting. The average chemical yield for Sr was 67%.

SRNL Approach

- Can we improve sample preparation chemistry for Sr-89/90 assay in larger soil samples?
 - Improve matrix removal steps
 - Minimize column rinse/elution volumes
 - increase chemical yields
 - Lower MDA

S. Maxwell et al, Rapid Determination of Radiostrontium in Large Soil Samples,

Journal of Radioanalytical and Nuclear Chemistry, online June 2012, 10.1007/s10967-012-1863-2

Rapid Sr-89, Sr-90 Acid Leach Method for Larger Soil Aliquots

Rapid Sr-89, Sr-90 Column Separation Method for Soil

Sr Resin Separation

Load solution -1 drop/sec Rinses - 2 or 3 drops/sec

Sr-90 Soil Method (50 gram)

Sample	Sr carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(%)	(pCi g⁻¹)	(mBq g⁻¹)	(mBq g ⁻¹)	(%)
1	95.9	0.160	5.92	6.05	2.20
2	98.6	0.160	5.92	6.02	1.69
3	94.6	0.160	5.92	5.82	-1.69
4	91.8	0.160	5.92	6.32	6.76
5	93.2	0.160	5.92	5.96	0.68
6	92.5	0.160	5.92	5.60	-5.41
7	91.2	0.160	5.92	5.85	-1.18
Avg	94.0			5.95	0.43
SD	2.6			0.22	
% RSD	2.8			3.77	
	Meesured				
	Measured value	es corrected for 1.35 mBq $^{\circ}$	⁹⁰ Sr/g found in unspiked so	il	

MDC = 0.011 pCi/g (0.41 mBq/g)

90 minute count

Sr-90 Soil Method (50 gram)

Sample	Sr carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(%)	(pCi g⁻¹)	(mBq g⁻¹)	(mBq g⁻¹)	(%)
1	87.8	0.32	11.84	11.2	-5.41
2	88.4	0.32	11.84	11.9	0.51
3	87.1	0.32	11.84	12.2	3.04
4	93.9	0.32	11.84	12.7	7.26
5	92.5	0.32	11.84	11.2	-5.41
6	87.1	0.32	11.84	10.9	-7.94
7	90.5	0.32	11.84	10.7	-9.63
Avg	89.6			11.5	-2.51
SD	2.7			0.7	
% RSD	3.1			6.4	
	Measured value	s corrected for 1.35 mBg ^g	³⁰ Sr/g found in unspiked so	il in the second	

MDC = 0.0045 pCi/g (0.17 mBq/g)if 480 minute count

Sr-90 Soil Method (50 gram)

Sample	Sr carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(%)	(pCi g⁻¹)	(mBq g⁻¹)	(mBq g⁻¹)	(%)
1	86.4	1.60	59.2	60.6	2.36
2	93.9	1.60	59.2	54.9	-7.26
3	81.0	1.60	59.2	58.3	-1.52
4	92.5	1.60	59.2	57.7	-2.53
5	87.8	1.60	59.2	57.6	-2.70
6	93.9	1.60	59.2	58.3	-1.52
7	89.8	1.60	59.2	57.2	-3.38
Avg	89.3			57.8	-2.36
SD	4.7			1.7	
% RSD	5.3			2.9	
	Measured value	s corrected for 1.35 mBa ^e	⁹⁰ Sr/a found in unspiked so	il	

Sr-89/90 Soil Method (25 gram) –with HF Digest

Sample	Sr carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(%)	(pCi g⁻¹)	(mBq g⁻¹)	(mBq g⁻¹)	(%)
1	78.9	0.32	11.84	13.9	17.40
2	70.1	0.32	11.84	12.4	4.73
3	70.1	0.32	11.84	11.4	-3.72
Avg	73.0			12.6	6.14
SD	5.1			1.3	
% RSD	7.0			10.0	
	Measured value	es corrected for 1.35 mBq ^s	⁹⁰ Sr/g found in unspiked so	il	

3M HNO₃-0.05M oxalic acid rinse removes any tetravalent actinides

Sr Resin: Pb/Bi isotopes

Pb isotopes retained *What about Bi ingrowth during elution?*

Bi isotopes removed

lsotope	Half Life	Daughter	Half Life
Pb-214	26.8m	Bi-214	19.9m
Pb-212	10.64h	Bi-212	60.55m
Pb-210	22.26y	Bi-210	5.01d

Sr Resin

For 10 pCi Pb isotopes and 20 minute elution time:

Pb isotope	Bi ingrowth	Unsupported Bi β^- after			
10 pCi	20 min (pCi)	2 Hr	6 Hr	12 Hr	
Pb-214	3.8	0.0582	1.40E-05	4.90E-11	
Pb-212	2.02	0.3277	0.0211	0.00032	
Pb-210	0.02	0.0197	0.0193	0.0187	

Bi isotope decay from elution to count (including evaporation, mounting, weighing)

Summary

- New method for ^{89/90}Sr has been developed at SRNL
- High yields >90%
- Effective removal of interferences
- Preconcentration steps remove silicates, etc.
- Optimized column rinse and elution volumes
- Vacuum flow rates save time and money
- Lower MDA

