Separation of Mock Used Fuel and Mock Glass Debris using Eichrom Resins

Radiobioassy and Radiochemical Measurement Conference Audrey Roman, Rebecca Springs, Evelyn Bond, Ralf Sudowe October 28, 2014

Mock Used Fuel

Safeguards

- Material Accountancy (IAEA)
 - Special Nuclear Material: Pu-239, U-233, and U-235
 - Near Real Time Accountancy (NRTA)
 - Homogenous Samples
 - Batch Data
 - "Source data may include, for example, ... element concentration, isotopic ratios, relationship between volume and manometer readings and relationship between plutonium produced and power generated"

Material Accountancy of Used Fuel

Safeguard Analytical Methods for the Nuclear Fuel Cycle

Current Method

- Hybrid K–Edge (HKED)
 - XRF and KED
 - Very accurate
 - Only detects concentration

Proposed Method

- Inductively Coupled Plasma – Mass Spectrometer (ICP–MS)
 - Very accurate
 - Detects concentration of isotopes
 - Numerous isobaric overlaps for actinides
 - Need chemistry of samples prior to analysis

Automated Elution Scheme

Scheme 1 Alduster/Bttl(p/I) U(IV)

Eldser**A**sn**P(U(II)**/) Ehnech Astori (†11) Pu(III) Scheme 2

AldısternBu(III) Elmadnsitumipand Bl(UM)pnium

Americium

Component Effects on Adsorption

- Synergistic Effect
 - The combined species has a higher affinity than the individual species
- Antagonistic Effect
 - The combined species has a lower affinity than the individual species
- Competition Effect
 - The additional component competes with another metal for adsorption sites, lowering the number of available sites

Used Fuel Components

ORIGIN calculation for mass percentages are based on:

- 1. 30 MWd/kg M burnup
- 2. 10 year cool down period
- 3. 2.9% initial ²³⁵U enrichment

Ranked by Mass							
Rank	Element Percen						
1	U 98.43						
2	Pu	0.85					
3	Nd	0.13					
4	Cs	0.13					
5	Ce	0.1					
6	Тс	0.07					
7	Zr	0.07					
8	Am	0.06					
9	Np	0.04					
10	Sr	0.04					
11	Rb	0.02					
12	Sm	0.02					
13		0.02					
14	Cm	0.01					
15	Sn	<0.00					

Characterization of Am and Pu Adsorption to DGA Resin in 1M HNO₃ and HCl

Component Effects on Am and Pu Adsorption to DGA Resin in 1M HNO₃

Component Effects on Am and Pu Adsorption to DGA Resin in 1M HCl

Technetium Characteristics on DGA in 1M HNO₃

Technetium Characteristics on DGA in 1M HCl

Conclusions on Am, Pu Adsorption to DGA Resin

- 5M HNO₃ loading phase seems highly viable since Am and Pu adsorption in 1M HNO₃ is not considerably affected
 - Lanthanides and trivalent actinides are expected to be found in similar elution fractions
- Working capacity of the resin must be determined for DGA based on all trivalent metals
- TcO₄⁻ shows a synergistic effect on Am adsorption in 1M HCl acid

Characterization of Am, Pu and U Adsorption to UTEVA Resin in 1M HNO₃ and HCI

Component Effects on Am, Pu and U Adsorption to UTEVA Resin in 1M HNO₃

Component Effects on Am, Pu and U Adsorption to UTEVA Resin in 1M HCl

Conclusions on Am, Pu, and U Adsorption to UTEVA Resin

- No affects seen from additional components in 1M HNO₃
 - Loading characteristics should remain unchanged for used fuel
- Molybdenum antagonistic effects most likely due to the formation of complex oxyanions
- Overall, UTEVA very selective to tetra- and hexavalent metals

Investigation of Varying Matrices

Summary of Varying Matrices Studied

Matrix Constituents	Concentrations (M)	DGA	UTEVA
HNO ₃	0.035, 0.05, 0.5, 1.0, 5.0, 10.0, 10.57	Am, Cm, Pu	Am, Cm, Pu, U
HCI	0.035, 0.05, 0.1, 0.5, 2.0, 5.0, 8.1	Am, Cm, Pu	Am, Cm, Pu, U
H ₂ SO ₄	0.25, 0.5, 0.7, 1, 2, 3, 4	Am, Cm, Pu	
HI	0.001, 0.007, 0.015, 0.1, 0.145	Am, Cm, Pu	
HBr	0.001, 0.007, 0.015, 0.1, 0.145	Am, Cm, Pu	
$NaSO_4 + 1M HNO_3$	0.1, 0.5, 1.0, 1.5, 2.0	Am, Cm, Pu	
NaSO ₄ + 1M HCI	0.1, 0.5, 1.0, 1.5, 2.0	Am, Cm, Pu	
$NaBr + 1M HNO_3$	0.01, 0.1, 0.5, 1.0, 4.0	Am, Cm, Pu	
NaBr + 1M HCI	0.01, 0.1, 0.5, 1.0, 1.0	Am, Cm, Pu	
$NaNO_2 + 1M HNO_3$	0.001, 0.01, 0.05, 0.1, 0.5	Am, Cm, Pu	Am, Pu, o
$NaNO_2 + 1M HCI$	0.001, 0.01, 0.05, 0.1, 0.6	Am, Cm, Pu	Am, Pu, U
Ascorbic Acid + 1M HNO ₃	0 001 0 01 0 05 0 1 0 3	Am, Cm, Pu	Am, Pu, U
Ascorbic Acid + 1M HCl	0.001, 0.01, 0.05, 0.1, 0.3	Am, Cm, Pu	Am, Pu, U
Oxalic Acid + 1 M HNO_3	0.001, 0.01, 0.05, 0.1, 0.3	Am, Cm, Pu	Am, Pu, U
Oxalic Acid + 1M HCl	0.001, 0.01, 0.05, 0.1, 0.3	Am, Cm, Pu	Am, Pu, U

Pu, and U Adsorption to UTEVA in NaNO₂

Pu and U separation on UTEVA

Conclusions from Elution Profile Characterizations

Scheme 2

- AldısenBu(III) Istradnsitumipand Bl(UV)onium
- Americium

Proposed Used Fuel Separation

Vacuum Box Separations

Actinide Separation on Vacuum Box

Actinide Separation Conclusion

- Pu and U had sharp elution peaks
- Am had broad elution from DGA resin
 - Most likely due to the elevated flow rates
- Further broadening expected for mock used fuel separation

	% Recovery	STD
Am-241	95.01	14.04
Pu-239	95.54	0.06
U-233	97.29	0.68

Rapid Mock Used Fuel Separation

Conclusions

- Overall, recoveries were still high but had large deviations
- Some additional broadening in Pu elution
- Am elution characteristics varied
 - Most likely due to the addition of Tc-99

	% Recovery	STD
Am-241	92.68	39.60
Pu-239	99.18	1.65
U-233	103.29	5.27

Overall Conclusions

- UTEVA worked great
- Scheme 2 is viable and promising
- Replace DGA possibly with another extraction chromatography resin
 - TRU

Melt Glass Bead Separation

Mock Melt Glass

- Mixture of glass and cement to represent melt glass and urban debris
- Typically a 2 gram sample
- Long digestion process

Material	Main Compounds					
Glass	SiO ₂ , Na ₂ O, CaO, MgO, Al ₂ O ₃					
Cement	CaO, SiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ , CaSO ₄ • H ₂ O					

Expected Activation Products

Element	Isotope	Natural Abundance (%)[135]	Neutron Cross Section (barns)[136]*	(n,p) Product	Product T _{1/2} (unless noted otherwise)	
	48	73.72	0.05927	⁴⁸ Sc	43.67 h	
	46	8.25	0.2893	⁴⁶ Sc	83.79 d	
Titanium	47	7.44	0.14503	0.14503 ⁴⁷ Sc		
	49	5.41	0.0512	⁴⁹ Sc	57.18 m	
	50	5.18	0.0113	⁵⁰ Sc	102.50 m	
	56	91.75	0.11436	⁵⁶ Mn	2.58 h	
Iron	54	5.8	0.33447	⁵⁴ Mn	312.12 d	
	57	2.12	0.05705	⁵⁷ Mn	85.40 s	
	58	68.07	0.36358	⁵⁸ Co	70.86 d	
Nicolard	60	26.22	0.1456 ⁶⁰ Co		1925.28 d	
NICKEI	62	3.63	0.03117 ⁶² Co		1.50 m	
	61	1.14	0.09473 ⁶¹ Co		1.65 h	
	197	100	0.00188 ¹⁹⁷ Pt		19.89 h	
Gold**	196	n/a	0.0056 ¹⁹⁶ Pt _{(st:}		¹⁹⁶ Au, 6.17 d	
	195	n/a	0.003083	¹⁹⁵ Pt _(stable)	¹⁹⁵ Au, 186.09 d	

*14.1 MeV neutron energy, for n,p reactions

 $**^{197}$ Au, elastic scattering σ =2.6354b and n,2n σ =2.1323b

¹⁹⁶Au, inl=0.193b and n,2n=1.975578b

195Au, n-2n=0.8849b or n,p=0.003083b

Proposed Separation Scheme

Elution Profile for Detectable Activation Products

Figure 112. Glass/Cement Bead Separation Co, Mn, and Sc Elute Profiles All fractions are in 25 mL volumes. Mobile phases are as follows: A: 11 M HCl, B: 10 M HCl, C: 2 M HCl, D: 2 M HCl + 0.3 M Ascorbic Acid, E: 0.1 M HCl, F: 0.1 M HCl + 0.01 M HF, G: 0.01 M HNO₃

Elution Profile for all Components

	Al	Au	Са	Fe	Mg	Na	Ni	Ti	Mn-54	Co-60	Sc-46
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Fraction 1: Load	72.8	0	99.4	0	82.5	33.4	82.3	13.4	14	0	0
Fraction 2: 11 M HCl	0.0	0	0.6	0	0.0	20.5	0.0	0.0	16	0	0
Fraction 3: 11 M HCl	27.2	0	0.0	0	17.5	32.9	17.7	19.8	28	0	0
Fraction 4: 2 M HCl	0.0	0	0.0	0	0.0	13.2	0	66.8	1	78.1	0
Fraction 5: 2 M HCl	0.0	0	0.0	0	0.0	0.0	0	0	4	0	0
Fraction 6: 2 M HCl + 0.3 M Ascorbic Acid	0.0	0	0.0	52.4	0.0	0.0	0	0	5	0	0
Fraction 7: 2 M HCl + 0.3 M Ascorbic Acid	0.0	0	0.0	6.5	0.0	0.0	0	0	0	0	0
Fraction 8: 0.1 M HCl	0.0	0	0.0	41.0	0.0	0.0	0	0	0	0	4
Fraction 9: 0.1 M HCl	0.0	0	0.0	0	0.0	0.0	0	0	0	0	11
Fraction 10: 0.1 M HCl + 0.01 M HF	0.0	0	0.0	0	0.0	0.0	0	0	0	0	67
Fraction 11: 0.1 M HCl + 0.01 M HF	0.0	0	0.0	0	0.0	0.0	0	0	0	0	0
Fraction 12: 0.01 M HNO3	0.0	0	0.0	0	0.0	0.0	0	0	0	0	0
Fraction 13: 0.01 M HNO3	0.0	0	0.0	0	0.0	0.0	0	0	0	0	0

Foils are highlighted in green

Glass Components highlighted in purple Activation Products highlighted in pink

Conclusions

- More work is needed refine larger constituents in the glass bead
 - Include more rinsing
- Investigate each activation products individual elution profile in the complex sample matrices
- Optimize column size and elution volumes

References

- 1. Safeguards Techniques and Equipment (2011 ed.). Vienna: IAEA.
- 2. APS/AAAS (2008). *Nuclear Forensics Role, State of the Art, and Program Needs*. Washington, DC: American Association for the Advancement of Science.
- 3. Safeguards Techniques and Equipment (2011 ed.). Vienna: IAEA.
- 4. Hou, X., Roos, P. (2007). *Critical Comparison of Radiometric and Mass* Spectrometric Methods for the Determination of Radionuclides in Environmental, Biological and Nuclear Waste Samples. Denmark: Elsevier.
- 5. Rosenberg, R. J. (1993). Non-conventional Measurement Techniques for the Determination of Some Long-lived Radionuclides Produced in Nuclear Fuel a Literature Survey. *Journal of Radioanalytical and Nuclear Chemistry, Articles*, 171(2), 465–482.
- 6. Rollin, S. (1999). *On-line coupling of an ion chromatograph to the ICP-MS: Separations with a cation exchange chromatography column*. Stockholm: Swedish Nuclear Fuel and Waste Management Co.

References Cont'd

- 7. Siekierski, S. (1975). Theoretical Aspects of Extraction Chromatography. *Extraction Chromatography*, vol. 2, New York: Elsevier Scientific Publishing Company
- 8. Horwitz, E. P. (1998). Extraction Chromatography of actinides and selected fission products: principles and achievement of selectivity. *International Workshop on the Application of Extraction Chromatography in Radionuclide Measurement*, Belgium: IRMM (HP199).
- 9. Lehritani, M., Mantero, J., Casacuberta, N., Masque, P., Garcia-Tenorio, R. (2012). Comparision of two sequential separation methods for U and Th determination in environment samples by alpha particle spectrometry. *Radiochimica Acta*, 100, 431–438.
- 10. Horwitz, E. P., et al. (2005). Novel Extraction of Chromatographic Resins Based on Tetraalkyldiglycolamides: Characterization and Potential Applications. *Solvent Extraction and Ion Exchange*, 23, 319–344.

References Cont'd

- Horwitz, E. P., McAlister, D. R., Thakkar, A. H. (2008). Synergistic Enhancement of the Extraction of Trivalent Lanthanides and Actinides by Tetra-(n-Octyl)Diglycolamide from Chloride Media. *Solvent Extraction and Ion Exchange*, 26, 12–24.
- 12. Pourmand, A., Nicolas, Dauphas (2010). Distribution coefficients of 60 elements on TODGA resin: Application to Ca, Lu, Hf, U and Th isotope geochemistry. *Talanta*, 81, 741–753.
- Horwitz, E. P. et al. (1992). Separation and preconcentration of uranium from acidic media by extraction chromatography. *Analytica Chimica Acta*, 266, 25–34.
- 14. Horwit, E. P. (1993). New Chromatographic Materials for Determinations of Actinides, Strontium, and Technetium in Environmental, Biosassay, and Nuclear Waste Samples. July, 1993, www.eichrom.com. document. 16 December 2013. http://www.eichrom.com/docs/bib/pdf/ZZ931-Determin%20of%20Actinides-Strontium-Technetium%20in%20Env-Bioassay-Nuc%20Wste.pdf

References Cont'd

- 15. Mason, G. W., Griffin, H. E. (1980). Demonstration of the Potential for Designing Extractants with Preselected Extraction Properties Application to Reactor Fuel Reprocessing. *Actinide Separations*, Washington, DC: American Chemistry Society, Ch. 7.
- Vajda, N., Torvenyi, A., Kis-Benedek, G., Kim, C. K. (2009). Development of extraction chromatographic separation procedure for the simultaneous determination of actinides. *Radiochimica Acta*, 97, 9–16.
- *Eichrom DGA Resin*. 2013. Eichrom Technologies. March 2014. <u>http://www.eichrom.com/products/info/dga_resin.asp</u>
- *UTEVA Resin.* 2013. Eichrom Technologies. March 2014. <u>http://www.eichrom.com/products/info/uteva_resin.aspx</u>
- 19. Guenther, E. A. (n.d.). PNL-5109-105. Richland Washington: PNL.

Acknowledgements

Thesis Committee/UNLV Radiochemistry: Ralf Sudowe, Rebecca Springs, Evelyn Bond, Ken Czerwinski, Gary Cerefice, Patricia Paviet, Julie Bertoia, Trevor Lowe, Mary Turner, and everyone in the Radiochemistry group

Any Questions?

