

A BRAND OF EICHROM TECHNOLOGIES

New Applications and Services

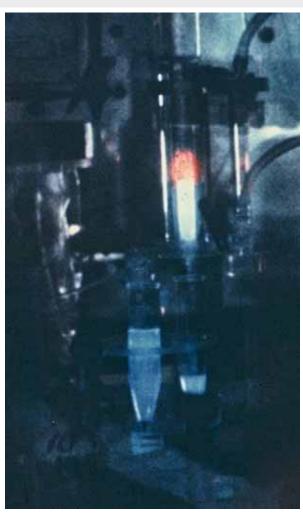
Terence O'Brien

7 February 2017

Eichrom Workshop / User's Group Meeting

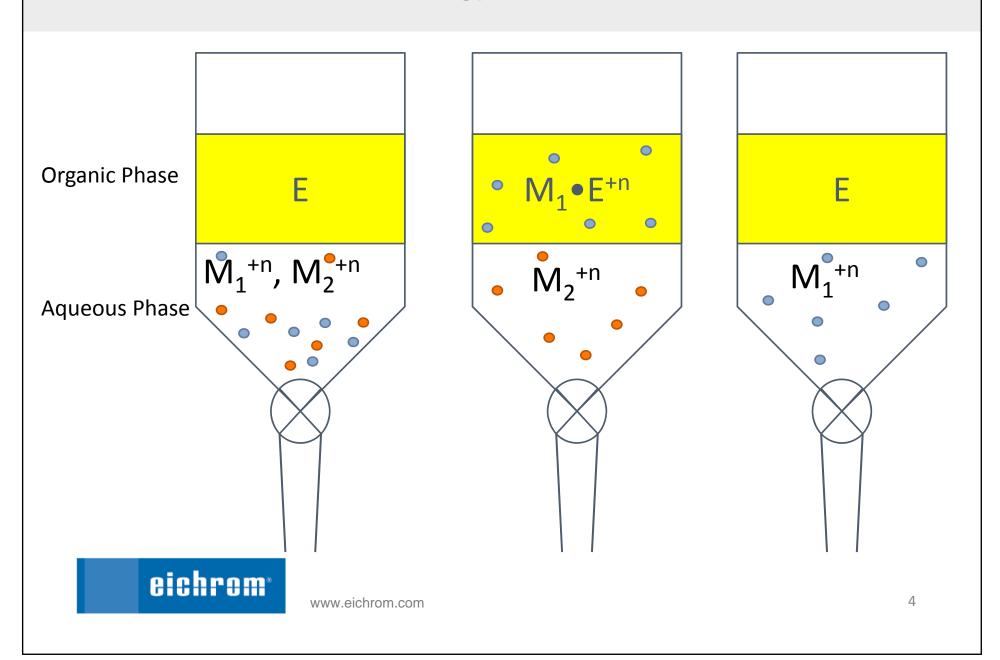
At the 62 Radiobioassay and Radiochemical Measurements Conference

Topics to be covered our New Applications and Services

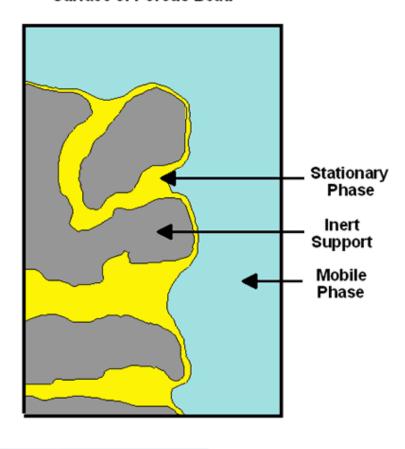

- Overview of Currently Published
 - 2014 Eichrom Methods Revisions
 - 2014 Application Notes
 - 2016 Application Notes
- Training Services
- RadVision^{3D®}

Eichrom Technologies

- Extraction Chromatographic Resins were developed at Argonne National Laboratory.
- Eichrom was founded in 1990 to commercially develop these resins.
- In 2015 Eichrom Celebrated our 25th Anniversary



3


eichrom[®]

Basis of Resin Technology - Solvent Extraction

Extraction Chromatographic Resin

Surface of Porous Bead

Inert support =

Macroporous Acrylic Resin

Example Stationary Phases

- Crown Ether (Sr)
- CMPO (TRU)
- DAAP (UTEVA)

eichrom^{*}

Eichrom Methods:

- First Introduced in the 1990s
- Separation of radioactive elements from water samples

Title	Reference
Strontium in Water	SRW 01
Nickel in Water	NIW 01
Iron in Water	FEW 01
Radium in Water	RAW 01
Technetium in Water	TCW 02
Radium in Water	RAW 01
Uranium in Urine	ACU 01
Am, Pu and U in Urine	ACU 02
Lead in Soil	SRS 01

Original Eichrom Method (1990s – 2000s)

1. Scope

2. Summary of Method

3. Significance of Use

4. Interferences

5. Apparatus

6. Reagents

7. Procedure (7.1, 7.2, 7.3, 7.4 ...)

8. Calculations

9. Validation Data

10. References

Advantages:

Procedures are very

detailed and multi-stepped

Calculations and

validations included.

Disadvantages:

Many pages 10-20+

Slight changes in chemistry between versions.

Many Column Only:

Updated Eichrom Method 2014

- 1. Scope
- 2. Summary of Method
- 3. Significance of Use
- 4. Interferences
- 5. Apparatus
- 6. Reagents
- 7. Procedure (7.1, 7.2, 7.3, 7.4 ...)
- 8. Calculations
- 9. Validation Data
- 10. References

Advantages:

Procedures are very detailed and multi-stepped

Calculations and validations included.

Flow Charts Included

Chemistry harmonized

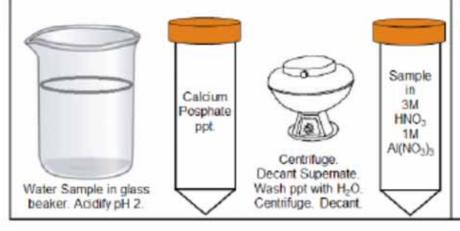
Cartridge and Column options

Eichrom Methods

Analytical Procedure

AMERICIUM, NEPTUNIUM, PLUTONIUM, THORIUM, CURIUM, AND URANIUM IN WATER

(WITH VACUUM BOX SYSTEM)


1. SCOPE

1.1. This is a method for the separation of americium, neptunium, plutonium, thorium, curium and uranium in water. After completing this method, source preparation for measurement of actinides by alpha spectrometry is performed by electrolytic deposition onto stainless steel planchets (Eichrom Method SPA02) or by rare earth fluoride microprecipitation onto polypropylene filters (Eichrom Method SPA01).

Flow charts for easy method application

- Add 5mL concentrated HNO₃ and add yield tracers.
- Add 1mL of 1.25M Ca(NO₃)₂.
- 4) Heat samples at medium setting for 30-60 minutes.
- Remove samples from heat.
- Add 0.75mL of phenolphthalein and 3mL of 3.2M (NH₄)₂HPO₄.
- While stirring sample, slowly add conc. NH₄OH until reaching pH 9.
- 8) Cool to room temperature. Allow precipitate to settle or centrifuge.
- 9) Decant supernate and discard as waste.
- 10) Transfer precipitate to centrifuge tube with DI water.
- 11) Centrifuge -10minutes at 2000rpm. Decant supernate.
- Add 10mL DI water to ppt. Mix well. Centrifuge. Decant supernate. Dissolve ppt with 5mL conc. HNO₅. Transfer to 100mL beaker.
- Rinse centrifuge tube with 2-3mL conc. HNO₃. Transfer to 100mL beaker. Evaporate to dryness.
- 14) Dissolve reside in 16mL 3M HNO₃-1M Al(NO₃)₃.
 Add 1mL 1.5M Sulfamic Acid, 0.5 mL Fe, and 1mL 1M Ascorbic Acid. Swirl to mix. Wait 3-5 minutes.
- 15) Add 1mL 3.5M NaNO2 Swirl to mix.

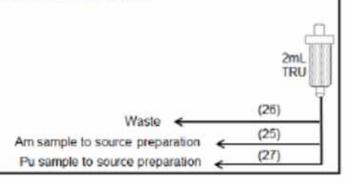
- Precondition TEVA-TRU with 5mL 3M HNO₃.
 Load sample onto TEVA-TRU. Allow liquid to drain. TEVA retaines U. TRU retains Am and Pu.
- 18) Rinse sample tube with 5mL 3M HNO₃.
 Add rinse to TEVA-TRU. Allow liquid to drain.
- Rinse TEVA-TRU with 5mL 3M HNO₃. Allow liquid to drain.
- Separate TEVA and TRU cartridges.

Waste (16) (17) (18) (19)

2mL TEVA

2mL

TRU

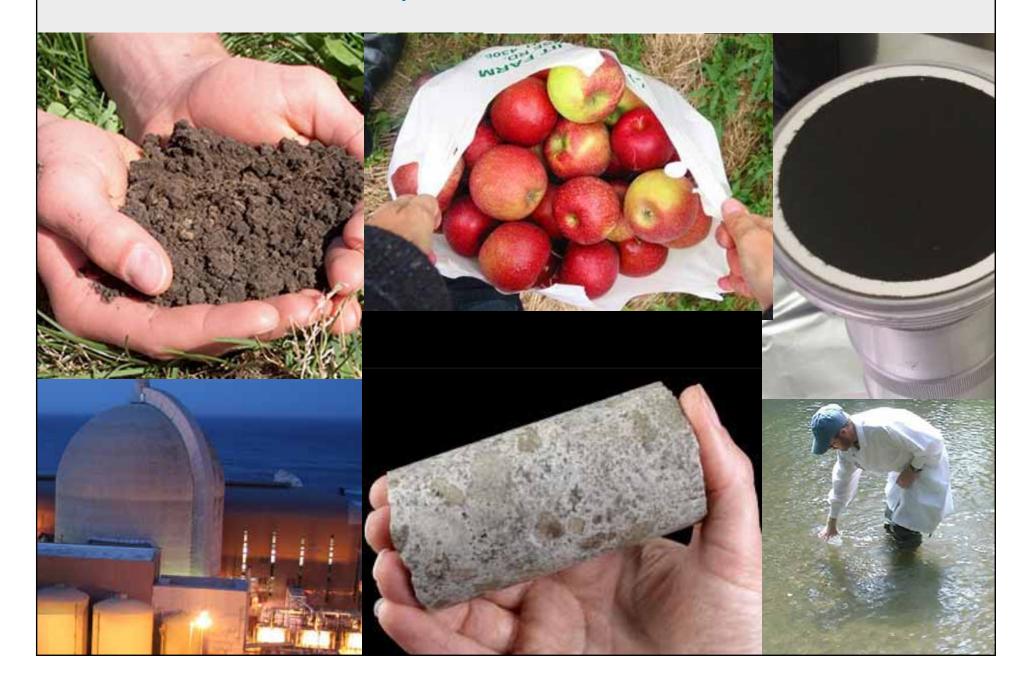

2ml

TEVA

- 21) Rinse TEVA column with 10mL 3M HNO₃.
- Place clean centrifuge tube below TEVA.
 Strip Th with 15mL 9M HCL.
- Rinse TEVA column with 20mL 5M HCI-0.05M oxalic acid. Discard to Waste.
- Place clean centrifuge tube below each TEVA. Strip Pu-Np with 20mL 0.1M HCI-0.05M HF-0.03M TICIs.

Th sample to source preparation Pu-Np sample to source preparation (21) (23) (22) (24)

- Place clean centrifuge tubes below TRU.
 Strip Am with 15mL of 4M HCI.
- 26) Rinse TRU with 12mL 4M HCL0.1M HF. Discard as waste.
- Place a clean centrifgue tube below each cartridge. Strip U with 15mL 0.1M ammonium bioxalate.



Some of the 32 Published Methods at eichrom.com

Reference	Title	Column	VBS
ACS 07	U in Soil	X	X
ACW 03	Am-Pu-U in Water	X	X
ACW 08	Th-Np in Water	X	X
ACW 11	Alpha Total Water	X	
ACW 17	Am-Pu-U-Np-Th-Sr in Water		X
PBW 01	Pb -Po in Water	X	X
H3W 02	H3 in Water	X	
SRW 01	Sr in Water	X	X
TCS 01	Tc in Soil	X	X
TCU 01	Tc in Urine (disc)	X	
TCW 01	Tc in Water	X	X
TCW 02	Tc in Water (disc)	X	

However there is a problem.

2014 Eichrom Application Notes

The goal of Eichrom application notes is to:

- Add matrices
- Add rugged sample preparation
- Add rapid techniques
- Add cutting edge separation techniques
- Shorten what the analyst needed to have on hand

Example of Application Note Layout

Rapid Determination of Actinides in Emergency Water Samples

AN-1413-10

Summary of Method Uranium, Plutonium and Americium-Curium are separated and concentrated from up to 400mL water samples using calcium phosphate precipitation. The precipitate is dissolved in nitric acid and aluminum nitrate. Actinides are separated from matrix impurities and potentially interfering radionuclides in the sample using 2mL cartridges of Eichrom TEVA and TRU Resins. Actinides are measured by alpha spectrometry following source preparation by cerium fluoride microprecipitation onto Eichrom Resolve® Filters. Chemical yields are determined by recovery of ²³²U, ²⁴³Am, and ²⁴²Pu (or ²³⁶Pu, if measuring ²³⁷Np) tracers. Typical chemical recoveries are >90%. A single operator can complete the separation method for batches of 12-24 samples in as little as 4-5 hours.

Example of Application Note Layout (Reagents)

TEVA Resin, 2mL Cartridges (Eichrom TE-R50-S)

TRU Resin, 2mL Cartridges (Eichrom TR-R50-S)

Ammonium Hydroxide (listed as 28% NH₃ or 56% NH₄OH)

Nitric Acid (70%)

Hydrochloric Acid (37%)

Hydrofluoric Acid (49%) or Sodium Fluoride

Deionized Water

Iron Carrier (50mg/mL)

Cerium Carrier (1mg/mL)

1.25M Ca(NO₃)₂

3.2M (NH₄)₂HPO₄

2M AI(NO₃)₃

10% (w:w) TiCl₃

²⁴²Pu (or ²³⁶Pu if meas. Np), ²⁴³Am and ²³²U tracers

Oxalic acid/Ammonium oxalate

Sulfamic Acid

Ascorbic Acid

Sodium Nitrite

Denatured Ethanol

Example of Application Note Layout (Equipment)

Vacuum Box (Eichrom AR-24-BOX or AR-12-BOX)

Cartridge Reservoir, 20mL (Eichrom AR-200-RV20)

Inner Support Tubes-PE (Eichrom AR-1000-TUBE-PE)

Yellow Outer Tips (Eichrom AR-1000-OT)

Resolve Filters in Funnel (Eichrom RF-DF25-25PP01)

50mL and 250mL Centrifuge Tubes

Centrifuge

Analytical Balance

Alpha Spectrometry System

Vacuum Pump

Sample

400mL water + Tracers, 2mL 1.25M Ca(NO₃)_{3.} 5mL 3.2 M (NH₄)₂HPO_{4.} Mix Well

Adjust to pH 10 with NH₄OH.

Mix Well.

Centrifuge 3500 rpm, 10 min.

Decant Supernate To Waste

Dissolve precipitate in 8mL 6M HNO₃ and 8mL 2M Al(NO₃)₃. Cool to room temperature.

Adjust valence states of actinides by adding the following reagents in the order listed (mix between additions):

0.5mL 1.5M Sulfamic acid, 10uL 50mg/mL Fe carrier, 1.25mL 1M Ascorbic acid, 1mL 3.5M NaNO₂, and 1.5mL 70% HNO₃.

Load Solution to Resin Separation

Preparation

Example of Application Note (Separation)

TEVA

TRU

- Precondition stacked 2mL TEVA-TRU with 10mL 3M HNO₃.
- (2) Load sample solution.
- (3) Rinse sample tube with 5mL 6M HNO₃. Add tube rinse to cartridges.**
- (4) Rinse cartridges with 5mL 3M HNO₃.
- Separate TEVA and TRU cartridges.
- (6) Rinse TEVA cartridge with:
 - -15mL 3M HNO₃
 - -20mL 9M HCI(remove Th) -5mL 3M HNO₃
- (7) Strip Pu(Np) from TEVA with 20mL 0.1M HCI-0.05MHF-0.01M TiCl₃.
- (8) Strip Am/Cm from TRU with 15mL 4M HCI. Dilute to 30mL prior to CeF₃ ppt.
- (9) Rinse TRU with 15mL 4M HCI-0.2M HF. (Th removal)
- (10) Strip U from TRU with 15mL 0.1M ammonium bioxalate.

- (11) Add 0.5mL 30% H₂O₂ to Pu and 0.2mL 30% H₂O₂ to Am/Cm samples for additional U decon. during CeF₃ ppt.
- (12) Add 0.5mL of 10% TiCl₃ to each U sample for CeF₃ ppt.
- (13) Add 50-100ug Ce carrier to all samples. Mix well. Add 1mL 49% HF. Mix well. Wait 15-20 minutes.
- (14) Set up Resolve® Filter Funnel on vacuum box.

assembly with

25mm, 0.1µm

Resolve***

polypropylene

- (15) Wet filter with 3mL 80% ethanol followed by 3mL DI water.
- (16) Filter sample.
- (17) Rinse sample tube with 5mL DI water and add to filter.
- (18) Rinse filter funnel with 3mL DI water and 2mL 100% ethanol.

- (19) Draw vacuum until filter is dry.
- (20) Remove filter from funnel assembly and mount filter on stainless steel planchet with 2-sided tape.

- (21) Dry filter under heat lamp for 3-5 minutes.
- (22) Measure actinides by alpha spectrometry.

Example of Application Note (Results)

Method Performance 10-40L Spike Seawater Samples

Sample	% Recovery	90Sr (mBq/L)	90Sr (mBq/L)	
Volume, L	Y carrier	Reference	Measured	% Bias
10	85.5	296	310	4.7
20	89.2	28.2	28.1	-0.4
30	72.3	18.8	18.5	-1.6
40	87.6	14.1	13.7	-2.8
40	86.5	14.1	13.9	-1.4

MDA for 40L sample = 0.35 mBq/L for 2 hour count time

MDA for 40L sample = 0.20 mBq/L for 8 hour count time

References

1) Sherrod L. Maxwell, Brian K. Culligan, Jay B. Hutchinson, Robin C. Utsey, Daniel R. McAlister, "Rapid determination of ⁹⁰Sr in seawater samples," *J. Radioanal. Nucl. Chem.*, 303, 709-717 (2015).

Eichrom Method Application Notes

Number	Title
AN-1401	Rapid Determination of 226Ra in Emergency Urine and Water
AN-1402	Rapid Determination of Sr in Emergency Milk Samples
AN-1403	Rapid Determination of Sr in 50g Soil Samples
AN-1404	Rapid Determination of Sr in 1-2 Liter Seawater Samples
AN-1405	Rapid Determination of Sr in Vegetation Samples
AN-1406	Rapid Determination of Actinides in Vegetation Samples
AN-1407	Rapid Determination of Sr in Animal Tissue Samples
AN-1408	Rapid Determination of Actinides in Animal Tissue Samples
AN-1409	Rapid Determination of Sr in Building Materials
AN-1410	Rapid Determination of Sr in Emergency Urine Samples
AN-1411	Rapid Determination of Sr in Emergency Water Samples
AN-1412	Rapid Determination of Actinides in Emergency Urine Samples
AN-1413	Rapid Determination of Actinides in Emergency Water Samples
AN-1414	Rapid Determination of 90 Sr in Up to 40 Liter Seawater Samples
AN-1415	Rapid Determination of ²¹⁰ Po in Water Samples
AN-1416	Rapid Determination of Actinides and ²¹⁰ Po in Water
AN-1417	Rapid Determination of 226/228 Ra in Water Samples
AN-1418	Rapid Determination of ²²⁶ Ra in Water Samples
AN-1419	Rapid Determination of ²²⁶ Ra in Concrete and Brick

Application Notes (AN-2014-###)

www.eichrom.com

	Actinide(s)	Radium	Strontium	
Animal Tissue	1408		1407	
Building Materials	1429, 1432	1419	1409	
Food/Vegetation	Food/Vegetation 1406, 1425, 1426, 1427		1402, 1405	
Glass Fiber Air Samples	1433	1420	1434	
Seawater	1423, 1424		1404, 1414	
Soils	1430, 1431, 1435, 1436	1421	1403	
Urine	1412, 1437, 1438	1401	1410	
Water	1413, 1416	1401, 1417, 1418	1411	

Others: Po – 1415, 1416

Rapid Determination of Pu, Np, and U in 1-8L Seawater AN-1423-10

Method Performance Pu, Np and U from Seawater

				% Tracer	Analyte(mBq/L)	Analyte(mBq/L)	
Analyte	Volume, L	Replicates	Tracer	Recovery	Reference	Measured	% Bias
²³⁹ Pu	2	5	²³⁶ Pu	91 <u>+</u> 9	33.8	32.6 <u>+</u> 1.4	-3.6
²³⁹ Pu	4	1	²³⁶ Pu	86	16.9	16.2	-4.1
²³⁹ Pu	8	2	²³⁶ Pu	87 <u>+</u> 3	27.8	27.6 ± 0.5	-0.7
²³⁷ Np	2	5	²³⁶ Pu	91 <u>+</u> 9	17.4	17.7 <u>+</u> 1.5	1.7
²³⁷ Np	4	1	²³⁶ Pu	86	8.7	7.2	-17
²³⁷ Np	8	2	²³⁶ Pu	87 <u>+</u> 3	4.4	4.2 <u>+</u> 0.4	-4.5
²³⁸ U	2	5	²³² U	99 <u>+</u> 2	51.8	49.3 <u>+</u> 1.5	-4.8
²³⁸ U	4	1	²³² U	86	25.9	25.0	-3.6
²³⁸ U	8	2	²³² U	92 <u>+</u> 5	96.3	94 <u>+</u> 3	-2.4

¹⁶ hour count times

References

1) Sherrod L. Maxwell, Brian K. Culligan, Jay B. Hutchinson, Robin C. Utsey, Daniel R. McAlister, "Rapid determination of actinides in seawater samples," *J. Radioanal. Nucl. Chem., 300(3), 1175-1189* (2014).

Rapid Determination of ^{226/228}Ra in Water Samples AN-1417-10

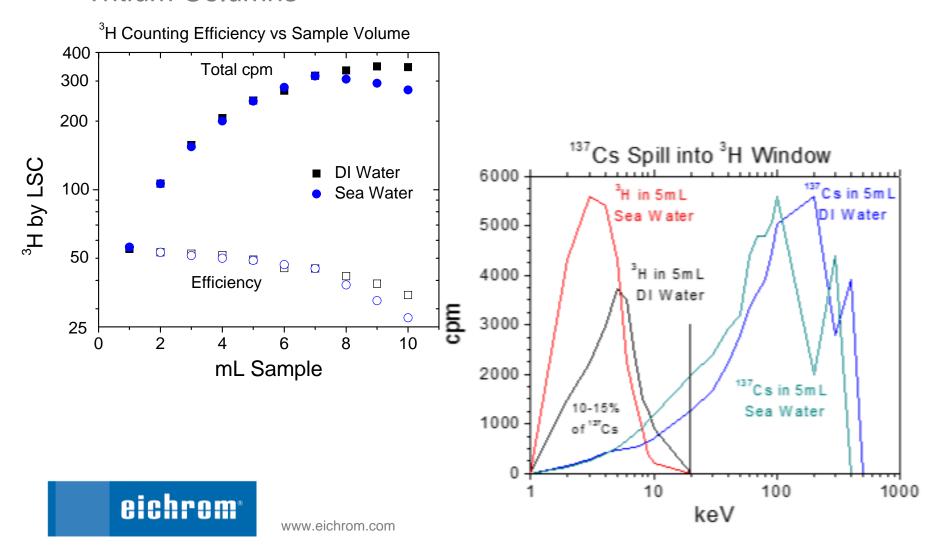
Method Performance ^{226/228}Ra in Water

Volume			¹³³ Ba Tracer	% Recovery	% Recovery
Sample	Liters	Replicates	% Recovery	²²⁶ Ra	²²⁸ Ra
River Water	1.5	3	101 <u>+</u> 5	103 <u>+</u> 1	103 <u>+</u> 7
Ground Water	1.0	5	95 <u>+</u> 4	104 <u>+</u> 1	102 <u>+</u> 8

1040pCi 133Ba, 5.0pCi 226Ra, 20pCi 228Ra

Rapid Determination of Sr in Animal Tissue Samples AN-1407-10

			% Recovery
Sample	grams	replicate	Sr carrier
Beef	100	6	96.3 <u>+</u> 0.5
Deer	100	59	83.4 <u>+</u> 3.5
Fish-Bass	200	72	89.0 <u>+</u> 16
Fish-Bream	100	57	91.7 <u>+</u> 10
Fish-Catfish	200	69	89.4 <u>+</u> 17
Fish-Mullet	200	6	85.6 <u>+</u> 17
Fish-Red Fish	200	6	77.7 <u>+</u> 21
Fish-Sea Trout	200	6	74.4 + 25
Hog	100	17	86.0 <u>+</u> 7.1
Shellfish	100	5	97.5 <u>+</u> 0.9



2016
More
Application
Notes

AN-1601	Method for ²²⁷ Ac in Geological Samples
AN-1602	Method for 227Ac in Water Samples
AN-1603	Rapid Method for Actinides in Limestone and Marble
AN-1604	Rapid Method for 89/90 Sr in Limestone and Marble
AN-1605	Rapid Method for 89/90 Sr in 5g Large Concrete Samples
AN-1606	Rapid Method for 90Sr in 10g Concrete Samples
AN-1607	Rapid Method for Pu, Np, Am in Large Soil Samples
AN-1608	Rapid Method for U and Th in soil
AN-1609	Rapid Method for ³ H in water
AN-1610	Rapid Method for 59/63Ni in Water
AN-1611	Rapid Method for 55Fe in Water (TEVA)
AN-1612	Rapid Method for 55Fe in Water (TRU)
AN-1613	68Ga Generator
AN-1614	²²⁵ Ac/ ²²⁵ Ra Generator
AN-1615	90Y Generator
AN-1616	²¹⁰ Po/ ²¹⁰ Bi Generator
AN-1617	²²⁷ Th/ ²²³ Ra Generator
AN-1618	²²⁸ Th/ ²³¹ Th Generator
AN-1619	²³⁹ Np Generator
AN-1620	²²⁴ Ra/ ²¹² Pb Generator
AN-1621	²³⁴ Th Generator
AN-1622	Separation of 89Zr from Y Target
AN-1623	Separation of 86Y From Sr Target

Examples of New Information in 2016 Applications

Tritium Columns

Iron – TRU or TEVA?

Method Performance

		%Rec				
		2mg Fe	Fe-55	Fe-55		
Method	Replicate	tracer	raw %rec	Tracer corrected	Bias	Impurity*
TRU	1	90.6	93.1	102.8	2.8	<0.5%
	2	90.0	92.3	102.5	2.5	
	3	94.8	92.4	97.5	-2.5	
	4	89.5	94.0	105.0	5.0	
	5	95.8	94.3	98.5	-1.5	
	6	95.8	92.8	96.9	-3.1	
	AVG	92.8	93.2	100.5		
	SD	3.0	8.0	3.3		

Method Performance

%Rec

		2mg Fe	Fe-55	Fe-55		
Method	Replicate	tracer	raw %rec	Tracer corrected	Bias	Impurity*
TEVA	1	95.8	89.2	93.1	-6.9	<0.5%
	2	94.4	89.7	95.0	5.0	
	3	97.6	87.2	89.4	10.6	
	4	95.3	88.2	92.6	7.4	
	5	83.9	79.8	95.1	4.9	
	6	89.1	89.6	100.5	-0.5	
	7	80.6	86.4	107.2	-7.2	
	AVG	91.0	87.2	96.1	•	
ahnam	SD	6.6	3.5	5.9		

www.eichrom.com

27

Where can you find these applications?

A BRAND OF EICHROM TECHNOLOGIES in Follow

Quick Links

Search
 Se

RADIOCHEMISTRY PRODUCTS

ION EXCHANGE RESINS

NUCLEAR MEDICINE

Latest Events 2015 Eichrom Product Catalog

Technical Info

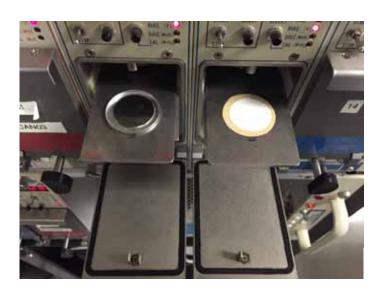
View Application Notes

Search Bibliography >

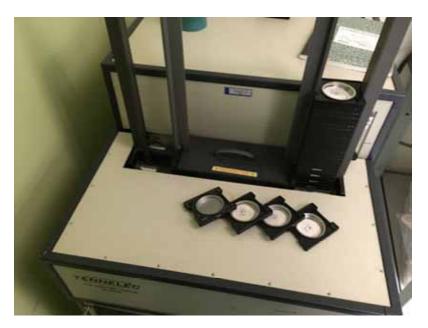
Order Online

Free ground shipping now available for all orders placed online within the continental US. >

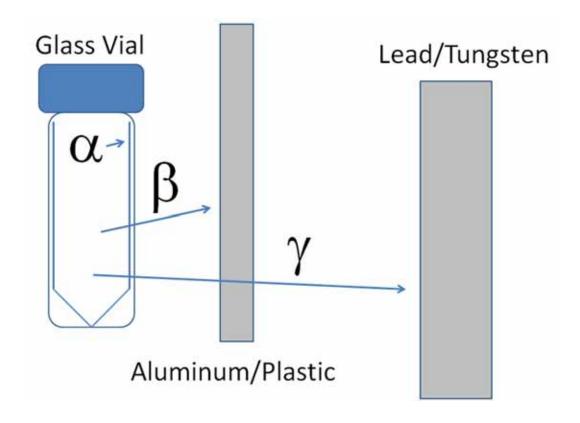
Resources


SDS >

Certificates of Analysis > ISO 9000 >


About Eichrom > Contact Eichrom > Links >

Services


- Custom Separations Training
 - Training is tailored to your needs and goals.
 - Training can incorporate a methods review and modifications recommendation
 - On site training can better equip key staff in trouble avoidance and lead to laboratories savings.

Types of Radiation, in the Lab and Counted by the Lab

www.eichrom.com

30

T-Flex® in the Lab

- Beaker Shields
- Single Vial Shields
- Multi Vial Shields

State Health Laboratory

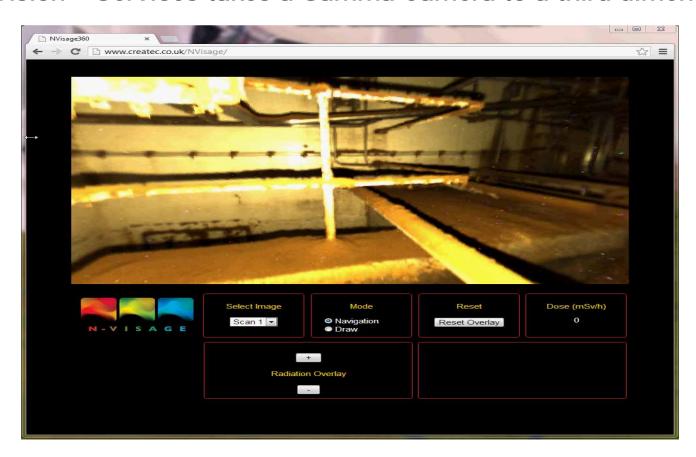
- RadVision^{3D} Services is an innovative, TURNKEY approach to radiation <u>identification</u> and <u>mitigation</u>.
- We utilize 3D scanning technology & world-class analysis tools to design work planning improvements and shielding solutions.

Our solutions result in:

Enhanced Planning & Performance

Improved Worker Safety & Reduced Dose Exposure More efficient shielding placement and procurement

RadVision^{3D} Services is NOT...

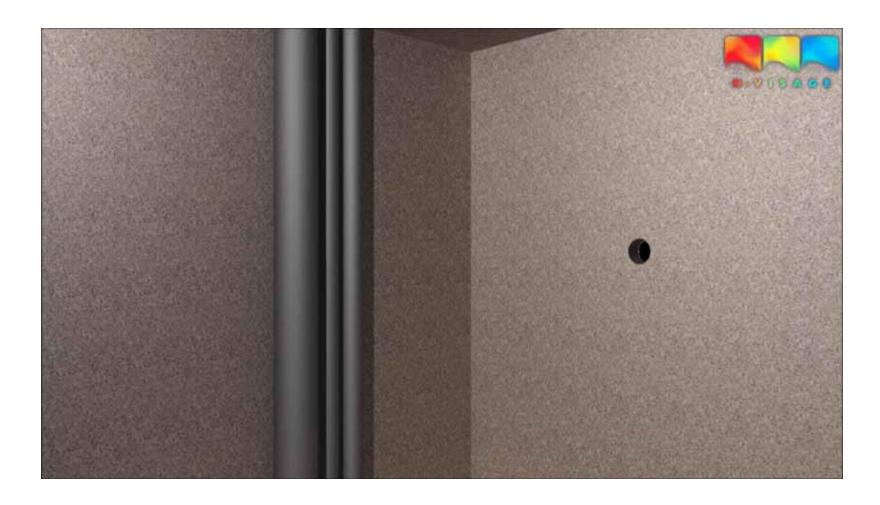


- 2-D Snapshots
- Point & Shoot
- Limited Field of View

- Fixed Location
- Dedicated Expert
- Software Purchases

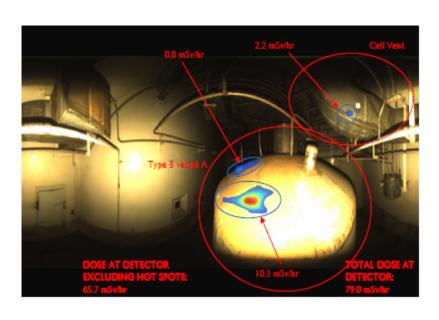
RadVision^{3D} Services takes a Gamma Camera to a third dimension!

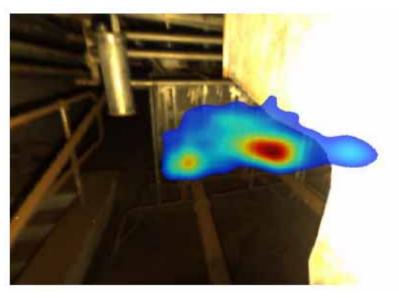
A service	 No personnel requirements No capital investment No expensive software upgrades 	
3-D & 360° x 360°	Data is captured in all directions, not just what is limited to your pointed field of vision	
A camera	Provides instant optical imagery of the scanned area in a fisheye view	
A laser scanner	Assigns an X,Y,Z geometrical coordinate to all surfaces and creates a 3-D point cloud model	
A Gamma Ray Spectrometer	Identifies of individual isotopes, measures dose rate intensity and reveals hot spot locations	



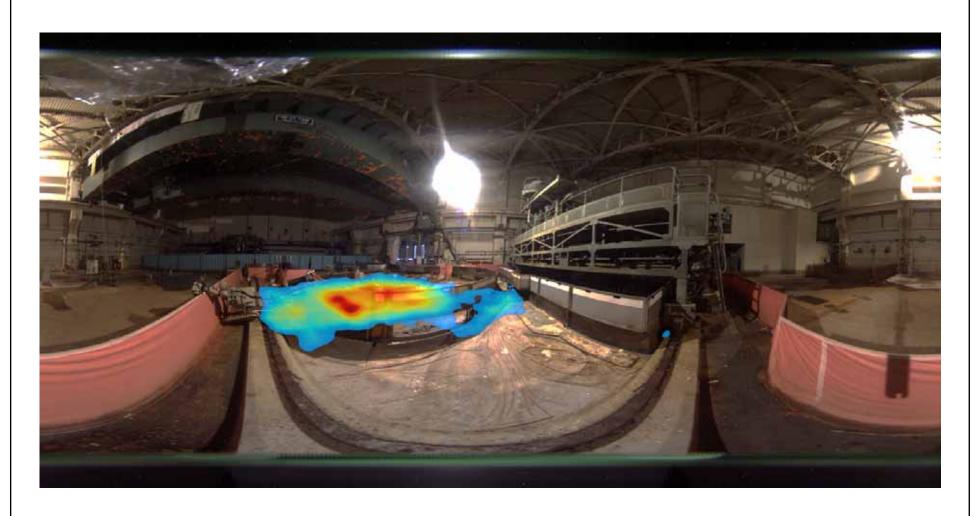
Data Collection

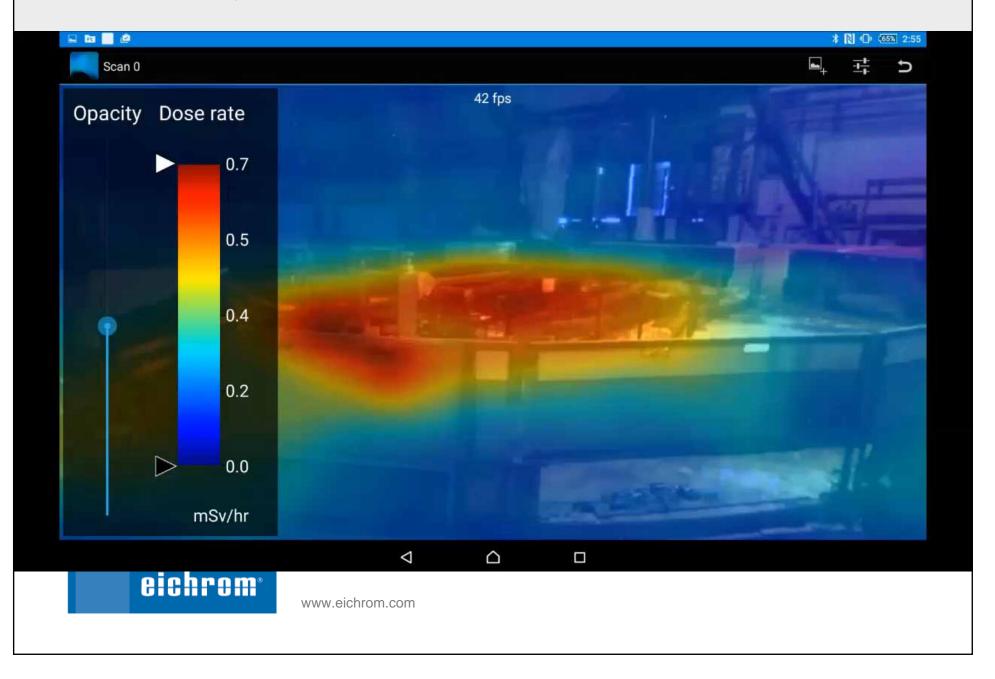
- Revolutionary 3-in-1 data collection hardware integrates:
 - Optical Imaging


Data Collection - Process Overview

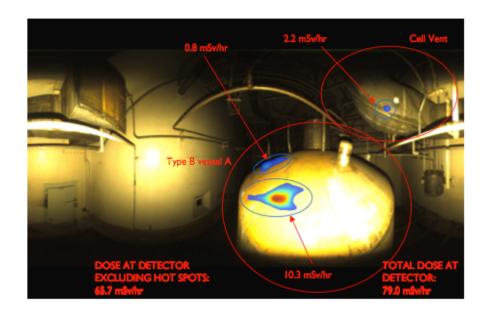


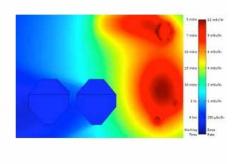
Instant Output


Gamma radiation profile overlaid on optical images



See Facility Conditions




See Faclity Conditions

Data Analysis – Knowledge is Power

After the data collection,
RadVision^{3D} uses
proprietary software to
analyze the plant radiation
conditions and develop
specific plant
recommendations. The
analyses provide custom
work planning, estimated
dose reductions and
optimized sh

utilization wi

Deliverables

- Instant Snapshots of radiation profile for hot spot identification
- Instant quantification of hot spot dose readings
- 3-D Model Creation
 - Dose Plane Analysis
 - Accumulated dose estimates
 - Shielding effectiveness evaluations
- Individual Isotope ID

Shielding System Configurations

- Present visual evidence of radiation field to upper management
- Optimize Shielding placement and amount of shielding
- 3D laser scan data valuable to all plant departments
- 3D laser scan data + gamma field can be used to optimize shielding design
 - More accurate attenuation estimates
 - Minimized shielding weight = easier engineering/labor
 - 3D measurements for attaching hardware, custom molds, etc.
- Superior presentation material for PHC meetings eighnome optional post processing for dose plane style dose estimation

Better Data Collection

Sophisticated Analysis & Conclusions

Targeted Shielding Solutions

See the Full Picture	Understand the Impact	Optimize Your Shielding
360° Gamma Imaging & Laser Scanning	Powerful Proprietary Software Differentiates from a Standard Gamma-cam	Customized, Engineered Shielding Solutions
Precise and Complete Radiation Profile of Area	2D Radiation Overlay & 3D Dose Plane Analyses	Reduced Barriers in Containment
Visualize Plant Conditions in a 3D Virtual Reality Environment	Sophisticated Work Planning Tools	Optimized Balance Between Permanent and Temporary Shielding Applications

A BRAND OF EICHROM TECHNOLOGIES

Thank you for your attention.

Questions?