Pb-Resin: New Approaches, Challenges, and Troubleshooting

Dustin May, Andrew W. Nelson, Michael K. Schultz

Older Methods with Pb-Resin

- Two similar methods
 - ASTM D7538
 - Eichrom Pb-210 and Pb-210 in Water OTW01 (Pre 5/1/2014)
- Iron Hydroxide preconcentration
- Load on Pb-Resin or Sr-Resin in 1 M HNO₃
- Strip Pb with 20 mL H₂O
- H₂SO₄ precip
- Gas Flow

Rationale for ASTM D7538

- Highly respected organization
- Highly regarded and widely used methods
- Validated by interlab comparisons
- Very similar to Eichrom method

Problems with ²¹⁰Pb Methods

- Recovery based on mass
 - Unknown quantities of stable Pb in samples
 - Drifting analytical balances
 - Must have exceptionally pure separations
 - Affected by humidity

- Stable Pb carrier
 - How much background is in Pb carrier?
 - Requires more resin
 - Requires H₂SO₄

Introducing, Pb-203

- Pb-203
 - Cyclotron produced
 - EC, screaming gammas
 - $-t_{1/2} = 52$ hours
 - "massless" tracer

- Can measure on the column!
- Do not need to consider endogenous Pb
- Drifting analytical balances no longer a problem
- May be able to use smaller quantities of resin per sample?
 - more samples

Experimental Conditions

- Fracking flowback fluid, river water, and tap water were utilized
- Each matrix was analyzed under the following conditions: Pb-203 tracer/stable Pb carrier, Pb-203 tracer only, and stable Pb carrier only
- Matrix/condition pairs were analyzed in triplicate in accordance with ASTM D7538

Pb-203 Tracer Recovery

Matrix	Condition
Fracking Flowback Fluid	Pb-203 Tracer Only
	Stable Lead Carrier & Pb-203 Tracer
River Water	Pb-203 Tracer Only
	Stable Lead Carrier & Pb-203 Tracer
Tap Water	Pb-203 Tracer Only
	Stable Lead Carrier & Pb-203 Tracer

Three replicates of each matrix/condition group were analyzed.

Stable Lead Carrier Recovery

Matrix	Condition
Fracking Flowback Fluid	Stable Lead Carrier Only
	Stable Lead Carrier & Pb-203 Tracer
River Water	Stable Lead Carrier Only
	Stable Lead Carrier & Pb-203 Tracer
Tap Water	Stable Lead Carrier Only
	Stable Lead Carrier & Pb-203 Tracer

Three replicates of each matrix/condition group were analyzed.

Stable Lead Carrier Recovery

Matrix	Condition
Fracking Flowback Fluid	Stable Lead Carrier & Pb-203 Tracer
River Water	Stable Lead Carrier & Pb-203 Tracer
Tap Water	Stable Lead Carrier & Pb-203 Tracer

• Three replicates of each matrix/condition group were analyzed.

Recovery Discussion

- Recoveries vary wildly across samples
 - Large standard deviations
 - Likely due to high lead concentrations in matrix
- The Pb-203 was measureable on the column post elution step
 - Lead was loaded and retained on the resin, but not eluted

Ulowa Recovery

- Soil Recoveries
 - 81 samples
 - Average: 75% ± 9 %
 - Range: 49% 105%
- Note, these were prepared by Eichrom Pb in Soil Method

- Water Recoveries
 - 8 samples
 - Average: 76% ± 10 %
 - Range: 62% 91%
- Note, these values were prepared by ASTM D7538 on flowback/produced fluids from the Niobrara formation

Hypotheses About Recovery Issues

pH seems a likely cause of the variation

Water Source	рН
UI Chemistry Lab	7
SHL at UI	5

- UI Chemistry Lab uses house deionized water
- SHL uses house deionized water that is then run through a Millipore purification system
- Incomplete rinsing of loading solutions could lead to lowered pH in an un-buffered system
- Stable lead carrier could actually be necessary for effective elution
- Same operator, minimize sources of variation

Immediate Plans

- Repeat experiment using buffered eluent solution recommended by current Eichrom method
- We would like to open it up to suggestions on method and experimental improvements

Future Directions

- Revision of ASTM method D7538
- Place a caution on Eichrom method for those that want to use water
- Possible develop single sample Pb-Po prep for alpha spec by SR Resin?

Thanks! Questions?

Interdisciplinary Graduate Program in

HUMANTOXICOLOGY