Summary of Method
A method for the preparation of ^{239}Np ($t_{1/2} = 2.355$ days) from ^{243}Am ($t_{1/2} = 7380$ years) source material is presented. The method employs 2mL cartridges of UTEVA and DGA resins to obtain high purity ^{239}Np in small volumes of eluate, while preserving valuable ^{243}Am material. The source material is adjusted to 4M HNO$_3$, treated with iron, sulfamic acid and ascorbic acid to fix the Np(IV) oxidation state, and loaded onto stacked 2mL cartridges of UTEVA and DGA resins. ^{239}Np is retained on UTEVA Resin, while ^{243}Am is retained on DGA Resin. The ^{243}Am source is recovered from DGA Resin with a small volume of 0.5M HCl. Following a suitable ingrowth period, the ^{243}Am can be acidified to 4M HNO$_3$ and used to produce additional ^{239}Np. The ^{243}Am is preserved nearly indefinitely and continuously purified from chemical and radiologic impurities run to run. ^{239}Np is recovered from UTEVA resin with 0.5M HCl.

Reagents
UTEVA Cartridges (Eichrom UT-R50-S)
DGA Cartridges (Eichrom DN-R50-S)
^{243}Am Source
Deionized Water
HCl
HNO$_3$
Sulfamic Acid
Fe carrier (10mg/mL)
Ascorbic Acid

Equipment
Glass vials for storage of ^{243}Am.
Glass or plastic vials/bottles for collection of ^{239}Np and waste.
10, 20 or 30mL plastic luer lock syringes
Gamma Spectrometry System for measurement of ^{239}Np and ^{243}Am.
References